2023 60th ACM/IEEE Design Automation Conference (DAC) | 979-8-3503-2348-1/23/$31.00 ©2023 IEEE | DOI: 10.1109/DAC56929.2023.10247946

Processing-In-Hierarchical-Memory Architecture for
Billion-Scale Approximate Nearest Neighbor Search

Zhenhua Zhu*!, Jun Liu*!, Guohao Dai?, Shulin Zeng!, Bing Li*, Huazhong Yang', Yu Wang!
!Dept. of EE, BNRist, Tsinghua University, 2Shanghai Jiao Tong University, 3Capital Normal University
Corresponding authors: daiguohao@sjtu.edu.cn, yu-wang @tsinghua.edu.cn

Abstract—Graph-based approximate nearest neighbor search
(ANNS) algorithms achieve the best accuracy for fast high-recall
searches on billion-scale datasets. Because of the irregular and
large-volume data access, existing CPU-based systems suffer from
heavy data movements when dealing with graph-based ANNS
algorithms. Near-memory-computing (NMC) architectures have
demonstrated great potential in boosting the performance of big-
data processing. However, existing NMC architectures face two
serious problems when processing graph-based ANNS algorithms:
(1) the memory capacity of main memory level NMC (e.g., 64GB)
cannot meet the storage requirement of ANNS on billion-scale
datasets (e.g., 800GB), resulting in heavy data transfers between
main memory and storage; (2) the contradiction between the
irregular and fine-grained graph access and the page-level read
granularity hinder the throughput of storage level NMC.

This paper proposes Pyramid, the processing-in-hierarchical-
memory architecture for graph-based ANNS on billion-scale
datasets. Pyramid combines the internal bandwidth benefits of
main memory level NMC with the capacity benefits of storage
level NMC. A hierarchical graph-cluster-based ANNS is also
proposed for Pyramid. It transforms the irregular data access on
large-scale graphs into the irregular access on small-scale graphs
at the main memory level and regular sequential in-cluster access
at the storage level. Experimental results show that with the same
recall of 0.9, Pyramid improves the throughput by 21.1~72.8x
and 26.0~50.7 x compared with existing CPU/GPU-based ANNS
systems on million-scale and billion-scale datasets, respectively.

I. INTRODUCTION

Approximate nearest neighbor search (ANNS) aims to find
the nearest (i.e., with the highest similarity) features in the
base datasets for a given query vector. ANNS is widely used
in many applications, such as recommendation systems [1],
images matching [2], semantic document retrieval [3], and
other information retrieval applications. In recent years, among
various ANNS algorithms, graph-based ANNS algorithms
achieve the best accuracy [4]-[6] and are widely used in
industry applications, such as Microsoft SPTAG [7].

Figure 1 shows the basic flow of graph-based ANNS
algorithms. The algorithms firstly map the features in the dataset
to the nodes in high-dimensional space and construct a graph
structure using these nodes in the training phase. In the search
phase, we traverse the graph from the starting node to find the
nearest nodes to the query vector. The main operations of the
search include visiting neighbor features, calculating distance
between feature and query vector, and sorting distances.

Despite the high accuracy of graph-based ANNS algorithms,
they suffer from low throughput on CPU when dealing with
billion-scale datasets. The major performance bottleneck of
CPU-based ANNS systems is the tremendous amount of data

*: Both authors contributed equally to this work.

Query ..
vector Find similar
vectors

dataset

Nearest neighbor search ~ High-dimensional space Graph-based ANNS

Top-K queue
(nearest K nodes)
Tlnsert to the queue
Calc distance between| Read the feature of
query and neighbor the neighbor

Irregular and large-
volume data access

Basic flow of graph-based ANNS
Fig. 1: Graph-based approximate nearest neighbor search.

Pop the farthest node For each neighbor of
(Queue head) the farthest node

access that accounts for 80% of the total search time. The large
data access overhead comes from the irregular, fine-grained
(e.g., 128-Byte per feature), and large-volume feature access
due to the graph sparsity, which causes the bandwidth utilization
and cache hit rate to be less than 39% and 16%, respectively.

Recently, near-memory-computing (NMC) architectures have
shown great potential in improving the performance of memory-
bound algorithms [8]-[13]. The NMC architectures place
computation units inside memory (e.g., dual-inline memory
module, DIMM) or storage (e.g., solid-state drives, SSD) to
exploit the high internal bandwidth and reduce the data transfers
among storage, main memory, and CPU.

However, directly applying graph-based ANNS algorithms
to existing NMC architectures faces two challenges. On the one
hand, the memory capacity of the main memory level NMC in
one DIMM (e.g., 64GB in [8], [9]) is hard to meet the storage
requirements for billion-scale datasets and their corresponding
graph structures (e.g., 800GB). In this case, we still need
massive data movements between the main memory level NMC
and the storage, causing >10x throughput deterioration of
NMC architectures. On the other hand, the storage level NMC
architectures (also call as in-storage computing) demonstrate
the virtue of TB level storage capacity. But the contradiction
between the irregular and fine-grained feature access and
SSD’s page-level read granularity (e.g., 4KB) leads to severe
bandwidth under-utilization. What is worse, the read latency of
SSD is relative long, e.g., 53us of SSD vs. 0.4us of DIMM for
4KB read, which also limits the overall throughput improvement
gain of the storage level NMC architectures.

To address the aforementioned challenges, this paper pro-
poses Pyramid, the first processing-in-hierarchical-memory
architecture for graph-based ANNS on billion-scale datasets.
It combines the high internal bandwidth of main memory level

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2023 at 08:41:59 UTC from |IEEE Xplore. Restrictions apply.

Qe Taoe R K pramid oy Serage MG
¥ 88% reduction in #Nodes Technique 1: '\gﬁ;ﬂ] rrnemINMC ’\Qﬁllin:]eml NMC
Distributed distance calc. ~ (Miion-scale) (billio :a e)
— o A4 - SRR S
|:> Nearest centres —p -0 communication Nyaﬂf,% 3| Milionscale . :
B H 80KB/query—240B/query s ANNfSy _g’ :
. 3 A
Graph-based ANNS O] O] |O BUS Technique 2: 2| Billion-scale Billi n I
on billion-scale datasets Ol O |O| ™ Incluster regular and) Storage Throughput opt. with S illion-scale
: : : : g In-storage-compultin; ’ ’ v 3
ozl elEeess (@) : : : sequential processing /¢80 R s pipeline for large batch Maigliiemoryl(SIITE) WS tolag Gl =AIB) N
large-scale graph Feature cluster Memory Capacity

(a) Challenge (b) Hierarchical graph-cluster-based ANNS (Sec. IV)

(c) Pyramid Architecture (Sec. V)

(d) Results diagram (Sec. V1)

Fig. 2: Pyramid overview: (a) Challenges of graph-based ANNS; (b) Hierarchical graph-cluster-based ANNS; (c) Pyramid

architectures; (d) Key results diagram.

NMC with the capacity benefits of storage level NMC. The
contributions of this paper include:

o We propose the hierarchical graph-cluster-based ANNS
for Pyramid. It transforms the irregular data access on
large-scale graphs into two parts, i.e., the irregular data
access on small-scale clustering centre graphs and regular
sequential data access in feature clusters. The two parts
are compliant with the memory access characteristics of
DIMM and SSD, respectively.

o We propose Pyramid to enable efficient near-memory
ANNS. At the main memory level, Pyramid leverages the
centralized sorting and distributed distance calculation to
fully exploit the internal memory bandwidth with little
hardware overhead. At the storage level, Pyramid reads
the feature cluster in page granularity and supports in-
storage sequential ANNS processing. We also optimize the
pipeline workflow of Pyramid to improve the throughput
for the large query batch.

o Experimental results show that with the same recall of 0.9,
Pyramid shows 21.1~72.8x ANNS throughput improve-
ment on million-scale datasets compared with CPU/GPU.
For billion-scale datasets, Pyramid demonstrates 26.0x,
50.7x, and 3.4x throughput improvement compared with
CPU, single GPU, and 8-GPU system, respectively.

II. PRELIMINARY: GRAPH-BASED ANNS

The graph-based ANNS algorithms are widely used to find
the nearest features in the base datasets for a given query
vector. The basic flow of graph-based ANNS algorithms is
shown in Figure 1. During the training phase, a graph structure
is constructed using the features in the dataset. The sparsity of
the graph (i.e., the ratio of the edge number to the square of the
node number) is usually < 1%, causing irregular data access.
During the search phase, we hold a Top-K priority queue to
keep the nearest K nodes to the query vector. In each search
step, the node in the queue head (i.e., the farthest node) is read
out. Then each neighbor of the farthest node is visited and is
determined whether it has been visited before. For the neighbor
being visited for the first time, its feature is accessed (e.g.,
128-Byte fine-grained access) and used for distance calculation
with the query vector. The calculated distance is inserted into
the priority queue for subsequent searches. After sufficient
search rounds, the nodes stored in the priority queue are the
most similar features found by ANNS. The search accuracy is

usually assessed using the recall rate, and the hardware search
throughput is measured by query per second (QPS).

III. Pyramid OVERVIEW

To tackle the problem of heavy irregular data access in graph-
based ANNS, we propose Pyramid to improve the throughput
by fully exploiting the memory internal bandwidth and reducing
data transfer. Figure 2 shows the overview of Pyramid.

Firstly, we propose the hierarchical graph-cluster-based
ANNS at the algorithm level, as shown in Figure 2(b). The
graph-cluster-based ANNS performs clustering onto the feature
dataset and build the graph only use the cluster centres.
Therefore, the irregular data access on the large-scale graph is
transformed into the reduced irregular data access on small-
scale graph and the in-cluster regular and sequential data access.
Then the architecture of Pyramid is meticulously designed to
execute computations of the hierarchical graph-cluster-based
ANNS. Pyramid mainly consists of two parts: Pyramid-M at
the main memory level and Pyramid-S at the storage level.
As shown in Figure 2(c), Pyramid-M performs graph-based
ANNS on the clustering centre graphs in DIMM. It leverages
the centralized sorting and distributed distance calculation to
reduce near memory hardware overhead. Pyramid-S reads the
feature cluster in page granularity and performs sequential in-
storage computing. The pipeline workflow between Pyramid-
M and Pyramid-S is also optimized to further improve the
throughput for large query batch.

Based on the high internal bandwidth of Pyramid-M and the
capacity advantage of Pyramid-S, Pyramid achieves a better
Pareto frontier in terms of throughput and memory capacity,
as shown in Figure 2(d).

IV. HIERARCHICAL GRAPH-CLUSTER-BASED ANNS

In order to reconcile the fine-grained feature data access
with the page-level read granularity of SSD, a straight forward
idea is to store all the features to be calculated in one page
and sequentially process all the features within this page. For
achieving this goal, existing work presents a memory-storage
hybrid searching system, SPANN [14]. SPANN stores the
centroid points of the posting lists (i.e., features) in the memory
and the large posting lists in the storage and constructs space
partition trees for nearest centroids search on CPUs.

Inspired by SPANN, we propose the hierarchical graph-
cluster-based ANNS, which contains two layers, as shown in
Figure 3. The bottom layer contains all the nodes of the feature

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2023 at 08:41:59 UTC from IEEE Xplore. Restrictions apply.

Cluster m [vid | Feature]
centre graphycs—" glfg memory | ¥ Ciyster 1 —~Page 1
oS !Cluster 2 [T T]-Page2
Graph Sl i
C|usfer [% =S o -»m C\uster3:|:|:| ~Page3
o7 2 i Cluster 4 [[_T_T__]—Page4 |

Fig. 3: Diagram of the hierarchical graph-cluster-based ANNS.

dataset. We apply the clustering algorithm used in SPANN
to the nodes in the bottom layer. For each graph cluster, we
assign multiple SSD pages to store its information that contains
node index and feature. The centres of the graph clusters are
extracted to form the top layer. We build a graph structure
using these centres and store the graph and centre features in
the main memory. The fine-grained graph data access of the top
layer and the page-level cluster data access of the bottom layer
are compliant with the memory access characteristics of DIMM
and SSD, respectively. During the search, we perform the graph-
based ANNS at the top layer to find the nearest centres, as
introduced in Section II. The nearest centres determine the
clusters need to be searched in the bottom layer. For the select
cluster, all its features are read out and calculated one-by-one.
Finally, all features of the total selected clusters are sorted by
distance, and the nearest features are returned.

The virtues of the hierarchical graph-cluster-based ANNS
are threefold. Firstly, the number of cluster centres is 1.2 x 108
for a billion-scale dataset (i.e., feature number is 10%). It
demonstrates that 88% of the graph data are reduced, making
it possible to store the entire centres-based graph in the
main memory and leverage the NMC capability of Pyramid-
M. Secondly, the nodes in the nearest cluster are processed
sequentially, avoiding the irregular graph data access. The
total feature size of one cluster is usually 4~12KB, which
also matches with the page-level read granularity (4~16KB)
of existing SSD. Thirdly, for each query, the number of
the selected nearest nodes is ~60, each of which is 4-Byte.
Thus, we only need to transfer 240-Byte data between main
memory and storage (80KB per query in CPU-based systems),
effectively reducing the data traffic.

V. ARCHITECTURE DESIGN OF Pyramid
A. Architecture Overview

Figure 4(a) depicts the architecture overview of Pyramid.
Pyramid supports near memory ANNS in DIMM and SSD
on the premise of retaining the original storage functions.
Pyramid-M, Pyramid-S, and CPU communicate with each other
through the memory controller hub (MCH). The MCH is also
responsible for controlling the entire data flow. At the main
memory level, Pyramid-M divides DIMMs into the neighbor
DIMM and the feature DIMM for storing graph structures
and feature datasets, respectively. For million-scale datasets,
Pyramid-M stores the entire datasets and their corresponding
graphs. While for billion-scale datasets, Pyramid-M only stores
the clustering centre graphs and the features of cluster centres.
The distance calculations are distributed in multiple NMC
modules of feature DIMMs, and the distance results are sorted
by a centralized priority queue module in the MCH. At the

storage level, Pyramid-S stores the entire feature datasets based
on the results of graph clustering. The computing functions of
Pyramid-S are enabled when dealing with billion-scale datasets.
Pyramid-S performs the in-cluster processing of the bottom
layer in the hierarchical graph-cluster-based ANNS.

Figure 4(a) also illustrates the data flow of Pyramid. At the
beginning of the search phase, the host CPU sends the query
vector to the MCH (I). And the MCH flushes the priority queue.
In each search step, the queue head is read out, and the MCH
sends its node index (Vjq) to the neighbor DIMMs (2). The
neighbor DIMMs query the neighbor indices (Nigs) of Viq 3
and return them to the MCH (@). Then, multiple Niq4s are sent to
different ranks of the feature DIMMs for distributed distance
calculation (5). Before the distance calculation, the feature
DIMMs leverage a Content-Addressable-Memory (CAM) [15]
to filter the visited IN;q whose distance to the query vector
has been calculated before. After that, they execute distance
calculations for the unvisited Nijq (6) and return the distances
to the MCH (7). The priority queue module in the MCH inserts
these distance results to the queue and performs sorting (8).
The main memory level graph-based search is completed after
a fixed number of search steps (2O)~®)).

For medium-sized datasets (e.g., million-scale), the priority
queue contains the node indices of the nearest features to the
query vector, which are the final output of ANNS @. While for
the large-sized datasets (e.g., billion-scale), the nodes stored
in the priority queue are the nearest cluster centres to the
query vector. The corresponding cluster indices (Cigs) of these
centres are sent to Pyramid-S (9). Pyramid-S executes in-storage
distance calculations and sorting (0 and returns the nearest
node list to the MCH (0.

B. Workload Analysis of Graph-Based ANNS

The graph-based ANNS contains three major operations:
the neighbor indices access, the distance calculation, and
the distance sorting. According the the operational intensity
(operations per Byte), these three operations are memory and
communication-intensive, memory-intensive, and computation-
intensive, respectively.

Here we use one search step (Figure 4(a) @~(@®)) of Pyramid-
M on the SIFT10M dataset [16] as the case study for workload
analysis. In SIFT10M, the feature dimension is 128 and each
feature element is 1-Byte. The calculated distance is truncated
to 4-Byte and Top-100 minimum distances are required. After
constructing the graph structure using the dataset, each node
has 40 neighbors on average and one neighbor index is 4-Byte.

In each search step, the neighbor indices access involves
160-Byte (40x4-Byte) sequential DRAM read and data transfer.
The main computation is to generate the head address of
neighbors. The address generation is negligibly time consuming
compared to memory read and data transfer. For the distance
calculation, we need to read 5,120-Byte (40x128x1-Byte)
feature data from DRAM, perform 15,320 (40x (128 SUB+128
MUL+127 ADD)) operations, and transfer 160-Byte (40x4-
Byte) distance results. The adjacent feature reads (two 128-
Byte) are usually non-contiguous and irregular; and the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2023 at 08:41:59 UTC from IEEE Xplore. Restrictions apply.

Contral @ vid Main memory: Pyramid-M o CIA (Wid)i }Nid L C/A (Nid) L
A > i N
CPUE omnd N (b) Nelghbor DINIMs query | [addr. Gen. & data buffe CAWFbased | || L3 Dist, FIFO
(d) Prior] ™| pistributed distance calculation \?:" isited list ISP [Qd]-|Qd
Queue |) Nid | [Distance| [Distance __|Distance ® T X Nid | - | Nid —>
Que ®Sort calc. calc. calc. Dist Dist.| - | Dist.
vectg; @Dist (c) Feature DIMMs calc
—— Mem - >| Query feature reg
Er= ;
NearestVid Hub 299, (e) SSD: Pyramid-S D D"ff ank 0 ank 3 - DIMM NMC
for billion-scale datasets calc b) Neighbor DIMM c) Feature DIMM
(MCH) ®‘—E\V -G) J“gson () Neig © L
(a) Architecture and data flow overview _ Microcontroller Flash ctrl | | Dist. calc| CHo :
5 Tkl
3 I Flash ctrl M‘CHW [Die] --- [Die]:
SN CEer B
oH (8 SSD-level : L I ‘
®| | PRAM sorting Flash ctrl | | Dist. calc| CHx - [Die]

(d) Top-K priority queue

(e) Pyramid-S: in-storage-ANNS

Fig. 4: (a) Overview and data flow of Pyramid; (b) neighbor DIMM; (c) feature DIMM; (d) Top-K priority queue module; (e)

Pyramid-S architecture.

operational intensity is 2.99 operations per Byte. The distance
sorting operation receives and inserts the 40 distances into
the Top-100 priority queue. Each inserting incurs at most
100 4-Byte comparisons with the operational intensity of 25
operations per Byte. According to the above analysis, the
distance calculation occupies more than 97% of the total
memory access and data transfer, which definitely needs to
be addressed using NMC. In Pyramid-M, different ranks and
their NMC modules work independently, and the distance
calculations for different features can also be paralleled. So
we split and store the entire datasets into multiple ranks and
design the rank-level NMC modules for distributed and parallel
distance calculations. Further, to minimize the additional
hardware costs, we reduce the number of multipliers and adders
as much as possible. The size of sub-features processed at one

time per NMC module is:
JDRAM X 8 X 2

faigitat X By)
where fpran and fgigirar are the frequency of DRAM and
NMC modules, respectively. By is the Byte size of each feature
element. “8” and “2” mean the DRAM rank outputs 8-Byte
data at a time with double data rate. Equation 1 ensures that
the DRAM read and distance calculation can be pipelined.

While for the distance sorting, its performance bottleneck
exists in the sorting operations rather than the data transfer.
Therefore, placing the priority queue inside the NMC modules
is hard to obtain the expected throughput gain. In addition,
when handling the queries in batches (i.e., process multiple
queries concurrently), multiple priority queues must be placed,
each of which is assigned to one query. However, the Top-K
priority queue needs register resources of O(K), the duplication
of priority queue is expensive for NMC. Considering these
limitations, we design the centralized priority queue module in
the MCH, which has more relaxed hardware constraints and
can efficiently interact with memory and storage.

sub-featureg;,e =

C. Pyramid-M Architecture Details

Based on the conclusions of the previous workload analysis,
we design Pyramid-M for graph-based ANNS. Figure 4(b)~(d)
show the architecture details of Pyramid-M.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded

Neighbor DIMM. The neighbor DIMM shown in Fig-
ure 4(b) is responsible for looking up the neighbors of the
given node index. Compared with the original memory-oriented
DIMMs, we add an address generation module at the DIMM
level. The address generation module receives the node index
(Viq) and calculate the head address of its neighbors.

Feature DIMM. Figure 4(c) illustrates the design of the
feature DIMM that contains the rank-level CAM-based visited
list, the rank-level distance calculation module, and the DIMM-
level distance FIFO (first-in-first-out). At the rank level, we
store the indices of the visited nodes in the CAM-based visited
list, each CAM row stores one visited node index. When a new
neighbor index arrives (IN;q), the CAM is used for comparing
the IN;q with all visited node indices in parallel. If the Niq is
found in the CAM, i.e., the distance of the N4 to the query
has been calculated, the rank-level NMC module processes the
next neighbor. Otherwise, the IN;4 is written into the CAM
and its feature is read out from DRAM. The readout feature
is then split into multiple sub-features and sent to the distance
calculation module one-by-one. We also design a distance FIFO
at the DIMM level to buffer the calculated distances from the
ranks in this DIMM. Each entry of the distance FIFO contains
three parts: the query ID (Q;q), the neighbor index (Niq), and
its distance result.

Centralized Top-K priority queue module. To improve
the throughput of sorting, we design a priority queue module
with one input per cycle, which is shown in Figure 4(d). The
priority queue module uses 2K registers for high-throughput
Top-K sorting, which consist of K queue registers (QRegs) and
K temporary registers (TRegs). The queue head represents the
minimum distance. In each cycle, the input distance is written
into the first TReg. For other registers, if the distance stored
in the i*" TReg is larger than that in the i** QReg, the data of
the it" TReg is transferred to the (i + 1) TReg. Otherwise,
the data of the i*" TReg is written into the i*"* QReg, and the
data of the i*" QReg is written into the (i + 1) TReg.

D. Pyramid-S Architecture and Workflow Optimization

Figure 4(e) depicts the architecture overview of Pyramid-S.
The architecture design is also based on the idea of centralized

on December 19,2023 at 08:41:59 UTC from IEEE Xplore. Restrictions apply.

Batch = 1
Pyramid-M

"Pyramid-S [I I]
Latency: L,

Query, Query, Querys
|[Eaaaaazal [[EEEE]

Throughput: T, =3/t

BatCh.= 3 Query, Query, Query; Query, Querys Queryg
Pyramid-M| I I I \] !

Pyramid-S : e]
; Latency: L,

T T
" Throughput: T, = 6/t !

Lo<L,<SLA, T,=2T,
Fig. 5: Pyramid workflow optimization.

TABLE I: Memory configurations used in Pyramid.
DIMM configurations
Memory capacity 64GB
Channels/Rank per channel 2/8
NMC per rank 2
DDR4 DRAM parameters

DDR4 configurations 4Gb x8 3200
Clock frequency 1600MHz
tRCD-tCAS-tRP 22-22-22

SSD configurations [13]

Storage/Page capacity 1TB/16KB
Channels/Chips per channel 32/4
Flash array access latency S53us

Flash channel bandwidth 800MHz

sorting and distributed distance calculation. Pyramid-S contains
three modifications compared with original SSDs. Firstly, at
the micro-controller level, the flash firmware of host interface
layer (HIL) is modified to enable the translation between the
centre index and the logical block address (LBA). Secondly,
at the flash channel level, since different channels can work
simultaneously, we attach one distance calculation module to
each flash controller to explore the channel-level parallelism.
Thirdly, at the SSD level, multiple priority queues are placed
to sort the distances from all channels, and the queue number
determines the largest batch size that Pyramid-S supports.

To improve the throughput and making Pyramid-M and
Pyramid-S work better together, we optimize the workflow
of Pyramid as shown in Figure 5. Considering the metric
of throughput under latency constraint (i.e., service-level
agreement, SLA) in server applications, the key idea is to
improve the throughput with acceptable latency overhead. Since
the effective bandwidth of SSD increases with more requests
[17], we increase the number of queries (i.e., batch size)
processed by Pyramid-S at a time. Besides, the search latency
of Pyramid-M is lower than Pyramid-S. Therefore, in order to
be pipelined with Pyramid-S, Pyramid-M processes the queries
one-by-one, which can also avoid the hardware duplication
for large batch size. In the example shown in Figure 5(c), by
setting the batch size to three, the throughput is improved by
2x while the latency still satisfies the SLA.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Pyramid setup: We build a trace-based ANNS simulator
and use the memory configurations in Table I to simulate
Pyramid. We use Ramulator [18] and MQSim [19] to evaluate

TABLE II: Throughput results (QPS) on million-scale datasets.

SIFT SPACEV GeoMean
10M 100M 10M 100M
CPU 7116 3443 5738 3362 4662
GPU 39039 14846 20427 5648 16108
Pyramid | 403637 301974 336813 323056 339357
Speedup
to CPU 56.7x 87.7x 58.7x 96.1x 72.8 x
Speedup
to GPU 10.3x 20.3x 16.5x 57.2% 21.1x
CPU 1GPU 8 GPU Pyramid — Pyramid — Pyramid
O @ BS64 O @ BS12§ O @ BS12§ O @yBrZTI o @y@% O @yBqurgo
@ E 44170 43197
& 4E+4
£ 3E+4
_g; JE+d 20283 18660 45506
S 8832
o 1E+4 6131 1502 7746
£ om0 E8852[] 2wzl |[]
SIFT-1B SPACEV-1B

Fig. 6: Throughput results (QPS) of CPU, GPU, and Pyramid
on billion-scale datasets, “BS” represents batch size.

DRAM and SSD, respectively. The NMC modules are modeled
using Synopsys Design Compiler with TSMC 65nm technology
library at the frequency of S00MHz. We scale the performance
results to 32nm technology node according to [20].

2) Baseline: For the CPU baseline, we run two SOTA graph-
based ANNS algorithms HNSW [5] and SPANN [14] on the
Intel Xeon 8-core CPU running at 2.1GHz with 64GB DIMM
for million-scale and billion-scale datasets, respectively. We run
the SOTA GPU-based design GGNN [21] on Nvidia RTX 3090
with 24GB memory as the GPU baseline. The storage-based
NMC baseline we used refers to [12].

3) Datasets: We use two representative ANNS datasets with
different scales, SIFT [16] and SPACEV [22]. The throughput
is evaluated with the recall of 0.9.

B. Performance on Million-scale Datasets

Table II shows the throughput of Pyramid, CPU, and GPU
on million-scale datasets (/0M for ten million and /00M for
one hundred million). Since the main memory can store the
entire million-scale datasets, Pyramid-S is disabled in Pyramid.
Pyramid can achieve 72.8 x and 21.1 x throughput improvement
compared with CPU and GPU, respectively. The relative high
throughput of GPU is achieved at the cost of high latency,
causing GPU cannot satisfy strict SLA constraints (e.g., 1ms).
The average search latency of CPU, GPU, and Pyramid is
0.2ms, 5.1ms, and 3.0us, respectively.

C. Performance on Billion-scale Datasets

1) Comparisons to CPU and GPU: Figure 6 provides the
throughput results of CPU, GPU, and Pyramid with different
batch sizes. Note that the memory of single GPU cannot meet
the storage requirement of billion-scale datasets, which needs
frequent data interaction with SSD. So we also use an 8-
GPU system with 192GB memory as the baseline. Pyramid
with the batch size of 100 achieves 26.0x, 50.7x, and 3.4x

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2023 at 08:41:59 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Throughput results (QPS) of different NMC
architectures on billion-scale datasets.

SmartSSD
[12]

Pyramid-M | Pyramid-S

only only Pyramid

SIFT 76 2003 94 44170

1685 63 43197

SPACEV | Not provided

TABLE IV: Pyramid hardware overhead.

Pyramid-M
dist. calc.
170589
68.39

Pyramid-M
sorting
996
0.62

Pyramid-S

10041658
6244

Area (um?)
Power (mW)

throughput improvements compared with CPU, single GPU and
8-GPU, respectively. As shown in Figure 7, when improving
the batch size from one to 100 with the optimized workflow, the
throughput of Pyramid is increased by 5.6~7.2x. Further, the
throughput gain from increasing the batch size becomes small
as the memory bandwidth bound is approached. Therefore, we
use 100 as the optimal batch size.

2) Comparisons with existing NMC architectures: Table III
demonstrates the comparison among Pyramid and other
NMC designs/configurations on billion-scale datasets. For
the in-storage processing architectures, i.e., the SmartSSD-
based design [12] and Pyramid-S only, Pyramid achieves
469.9~685.6x throughput improvements. The underutilized
memory bandwidth and frequent data movements between SSD
internal DRAM and flash arrays cause the serious performance
deterioration. In the main memory level NMC baseline, we
use CPU and original SSD to process the bottom level graph
clusters. Compared with this Pyramid-M only design, Pyramid
shows 22.1~25.6x throughput improvement.

D. Area and Power Analysis

Table IV provides the area and power overhead of Pyra-
mid. For Pyramid-M, the distance calculation module causes
0.17mm? and 68.39mW additional overhead per DIMM, which
is much smaller than the area (~3500mm?) and power of
entire DIMM (~10W). For Pyramid-S, we place 100 SSD-level
sorting modules for batch size of 100. These sorting modules
together with channel-level distance calculation modules occupy
10.04mm? and 6.24W, which meet the area budget of 30mm?
and the power budget of 55W for in-storage computing [13].

Pyramid-M — Pyramid-S — Pyramid
O La}{ency O Lé}(ency O Lg{ency O—Throughput
1E+5 gIFT-1B ‘ 6E+4
o =
T m od O D -
2 0E+0 1 1E+0 E
S 1E+5 SPACEV-1B 6E+4 €
o TSI T[] =8
oE+0 [l ﬂ ﬂ § . 1E+0 &

BS=1 BS=10 BS=100 BS=1000

Fig. 7: Latency and throughput of Pyramid with different batch
sizes (BS).

VII. CONCLUSION

This paper proposes Pyramid, the first Processing-In-
Hierarchical-Memory architecture for graph-based ANNS on
billion-scale datasets. By combining high internal bandwidth of
main memory level NMC with the capacity benefits of storage
level NMC, Pyramid can achieve 21.1~72.8x and 26.0~50.7 x
throughput improvements compared with CPU/GPU-based
ANNS on million-scale and billion-scale datasets, respectively.

VIII. ACKNOWLEDGEMENT

This work was supported by the National Natural Science
Foundation of China (No. 62104128, U19B2019, 61832007,
U21B2031, 62204164), Tsinghua EE Xilinx AI Research
Fund, Tsinghua-Meituan Joint Institute for Digital Life, and
Beijing National Research Center for Information Science and
Technology (BNRuist).

REFERENCES

[1] J. Johnson et al., “Billion-scale similarity search with gpus,” IEEE TBD,
vol. 7, no. 3, pp. 535-547, 2019.

[2] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
1JCV, vol. 60, no. 2, pp. 91-110, 2004.

[3] S. Deerwester et al., “Indexing by latent semantic analysis,” JASIST,
vol. 41, no. 6, pp. 391-407, 1990.

[4] W. Li et al., “Approximate nearest neighbor search on high dimensional
data—experiments, analyses, and improvement,” IEEE TKDE, vol. 32,
no. 8, pp. 1475-1488, 2019.

[5] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs,”
IEEE TPAMI, vol. 42, no. 4, pp. 824-836, 2018.

[6] S. Jayaram Subramanya et al., “Diskann: Fast accurate billion-point
nearest neighbor search on a single node,” NeurIPS, vol. 32, 2019.

[7]1 Microsoft, “Sptag: A library for fast approximate nearest neighbor search,”
[Online], 2022, https://github.com/microsoft/SPTAG.

[8] G. Dai et al., “Dimmining: pruning-efficient and parallel graph mining
on near-memory-computing,” in ISCA, 2022, pp. 130-145.

[9] L. Ke et al., “Recnmp: Accelerating personalized recommendation with

near-memory processing,” in ISCA. IEEE, 2020, pp. 790-803.

W. Huangfu et al., “Medal: Scalable dimm based near data processing

accelerator for dna seeding algorithm,” in Micro, 2019, pp. 587-599.

Y. Kwon, Y. Lee, and M. Rhu, “Tensordimm: A practical near-memory

processing architecture for embeddings and tensor operations in deep

learning,” in Micro, 2019, pp. 740-753.

J.-H. Kim et al., “Accelerating large-scale graph-based nearest neighbor

search on a computational storage platform,” IEEE TC, no. 01, pp. 1-1,

2022.

V. S. Mailthody et al., “Deepstore: In-storage acceleration for intelligent

queries,” in Micro, 2019, pp. 224-238.

Q. Chen et al., “Spann: Highly-efficient billion-scale approximate nearest

neighborhood search,” NeurIPS, vol. 34, pp. 5199-5212, 2021.

S. Jeloka et al., “A 28 nm configurable memory (tcam/bcam/sram) using

push-rule 6t bit cell enabling logic-in-memory,” IEEE JSSC, vol. 51,

no. 4, pp. 1009-1021, 2016.

H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg, “Searching in one

billion vectors: re-rank with source coding,” in ICASSP. IEEE, 2011,

pp. 861-864.

M. Jung et al., “Simplessd: Modeling solid state drives for holistic system

simulation,” IEEE CAL, vol. 17, no. 1, pp. 37-41, 2017.

Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram

simulator,” IEEE CAL, vol. 15, no. 1, pp. 4549, 2015.

A. Tavakkol et al., “Mqgsim: a framework for enabling realistic studies

of modern multi-queue ssd devices,” in FAST, 2018, pp. 49-65.

A. Stillmaker and B. Baas, “Scaling equations for the accurate prediction

of cmos device performance from 180 nm to 7 nm,” Integration, vol. 58,

pp. 74-81, 2017.

F. Groh, L. Ruppert, P. Wieschollek, and H. Lensch, “Ggnn: Graph-based

gpu nearest neighbor search,” IEEE TBD, 2022.

“Spacev datasets,” [Online], 2022, https://github.com/microsoft/SPTAG/

tree/main/datasets/SPACEV1B.

[10]

(11]

[12]

[13]
[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2023 at 08:41:59 UTC from IEEE Xplore. Restrictions apply.

