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Abstract—Video Generation Models based on 3D full attention
(3D-VGMs) have significantly enhanced video quality. However,
their inference overhead remains substantial, primarily due to
the high computational cost of the attention mechanism, which
accounts for over 75% of computations. Inspired by the success of
conventional video processing, where video compression exploits
similarities among patches, we point out that the attention
mechanism can also harness the benefits from similarities among
tokens. Nonetheless, two critical problems arise: (1) How can
similarities be efficiently acquired in real-time? (2) How can
workload balance be maintained when similar tokens are ran-
domly distributed?

To address these problems and leverage similarities for 3D-
VGMs, we propose SIMPICKER, a comprehensive attention-
aware algorithm-hardware co-design for 3D-VGMs. Our core
methodology is to fully utilize similarities in attention through
both coarse-grained and fine-grained approaches while adopting
dynamic adaptive strategies to leverage them. From the algorithm
perspective, we propose a speculation-based similarity exploitation
algorithm, allowing real-time importance speculation on the
frame level, which is coarse-grained, and the token level, which is
fine-grained. From the micro-architecture perspective, we propose
a buffered lookup table-based (LUT-based) multiplication archi-
tecture for FP-INT multiplication and further eliminate potential
bank conflicts to accelerate unimportant attention computation.
From the mapping perspective, SIMPICKER proposes an adaptive
grouping strategy in speculation to tame workload imbalance
caused by randomly distributed similar tokens and allow seamless
integration of our algorithms. Extensive experiments show that
SIMPICKER achieves an average of 5.21×, 1.45× speedup and
17.92×, 1.63× energy efficiency compared to the NVIDIA A100
GPU and the state-of-the-art accelerators.

I. INTRODUCTION

Video Generation Models (VGMs) [1]–[3] have successfully

created photorealistic videos using diffusion models. These

models show a strong understanding of physical laws [4],

marking a milestone towards advanced world models [5].

Diffusion transformer-based models [6]–[8] have shown supe-

rior performance in video generation tasks, tackling efficiency

and scalability problems that challenge traditional UNet-based

structures [9], [10]. The original 2D+1D attention VGMs

(2D+1D VGMs) [7], [8], [11] handle spatial and temporal

dimensions separately while resulting in temporal inconsis-

tency of videos [12]. 3D-VGMs [12]–[15] are more powerful
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alternatives which integrate spatial and temporal information,

producing higher-quality videos with better consistency.
Despite their superior performance, 3D-VGMs demand sig-

nificantly more computational resources. Fig. 1 (a) illustrates

the computation gap between 2D+1D VGMs and 3D-VGMs,

showing that 3D-VGMs have 2×, 4× computation compared

to their 2D+1D counterparts in medium-length videos and long

videos. Additionally, the primary computational bottleneck

shifts to the attention, which consumes over 75% of aggregate

computations. The data is evaluated on CogVideoX [12] and

Latte1 [8], aligning all the parameters.
Video processing technologies [16]–[18] have achieved re-

markable effects due to their ability to leverage spatial and

temporal similarities between patches. For instance, Discrete

Cosine Transform (DCT) [19] exploits similarities between

patches by converting spatial data into the frequency do-

main with the most energy concentrated in low-frequency

components, significantly reducing high-frequency details and

minimizing data redundancy. Guided by this, we can harness
the benefits from similarities among tokens for 3D-VGMs.

However, two challenges hinder their potential for accel-

erating the inference of 3D-VGMs. First, how can similar-
ity be efficiently acquired in real time? Existing works

acquire approximate maps of attention importance via low-

bit matrix multiplication [20], [21], but this approach results

in significant accuracy loss of over 5% while offering nearly

no acceleration in 3D-VGMs. Second, how can workload
balance be maintained when similar tokens are randomly
distributed? Although many works [22]–[24] have reused one

token’s results for other similar tokens based on similarities,

they incur heavy workload imbalance due to randomly dis-

tributed similar tokens (computing utilization <37%).
To tackle the above challenges, we propose SIMPICKER, a

comprehensive attention-aware algorithm-hardware co-design.

Our core methodology is to fully utilize similarities in attention

by both fine-grained and coarse-grained approaches and adopt

dynamic and adaptive strategies to tap their full potential. The

contributions can be summarized as follows:

• We introduce a speculation-based similarity exploita-
tion algorithm to exploit similarities on the frame/token

level. We identify the important parts in attention by pre-
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Fig. 1: Overview of SIMPICKER, a comprehensive attention-aware algorithm-hardware co-design in 3D-VGMs.

computing a small frame-level importance map so we can

perform mixed-precision multiplication for unimportant

parts. Also, we speculate on the input tokens and leverage

their similarities to reuse results. By our speculation-

based similarity exploitation algorithm, SIMPICKER can

reduce over 65% FP-FP multiplications to FP-INT multi-

plications in attention computation, thus achieving 2.01×
speedup compared with the original VGM.

• We propose a buffered lookup table-based(LUT-based)
multiplication architecture, SIMCORE, to provide sup-

port for our algorithm. SIMCORE supports FP-INT multi-

plication and eliminates the bank conflicts during parallel

accesses by a prefetching strategy of LUT Buffer. Our

architecture achieves 1.45× speedup compared to naive

design without buffered LUT.

• We propose an adaptive grouping strategy to tame

workload imbalance introduced by randomly distributed

similar tokens, allowing seamless integration between our

frame-level and token-level speculations, accelerating the

model by 1.10× on average.

Extensive experiments on various models and datasets

demonstrate that SIMPICKER achieves an average of 5.21×,

1.45× speedup and 17.92×, 1.63× energy efficiency com-

pared to the NVIDIA A100 GPU, and the SOTA accelerators.

II. BACKGROUND AND MOTIVATION

A. Diffusion Transformer and 3D Full Attention

3D-VGMs commonly utilize DiT as their backbone for

its scalability and performance. Fig. 2 illustrates 3D-VGMs’

structure and the noise prediction process, which takes

CogVideoX [12] as an example. At a specific diffusion

timestep [25], the input comprises a partially denoised video

and prompt, both of which undergo tokenization and embed-

ding to form a continuous token sequence X2×TN×C . Here, 2

corresponds to the batch size, T denotes the number of video

frames, N represents the number of tokens per frame, and C
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Fig. 2: 3D-VGM’s structure and the noise prediction process.

indicates the hidden dimension. The token sequence is then

processed through l layers of DiTs, which compute attention

across all tokens from different frames.

A DiT includes a multi-head self-attention (MSA), a feed-

forward network (FFN), and label embedding operators. The

computing flow of MSA can be expressed by QKV =
XWQKV , S = QKT , P = Softmax( S√

d
), and A = PV .

B. Motivation

As illustrated in Fig. 1 (a), the primary bottleneck lies

within the attention computation, which constitutes over 75%

of the total computational amount. This finding prompts us to

mitigate the overhead associated with the attention mechanism.

Drawing inspiration from successful video processing tech-

niques, our approach exploits the similarities and speculates

importance at the frame and token levels. Also, we need dy-

namic and adaptive strategies to tackle the workload imbalance

problems caused by similarity exploitation and fully utilize our

integrated framework.
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Fig. 3: (a) Overview of the algorithm. We speculate token-level similarities in Q by computing similarities and employ a

speculation-based matrix multiplication algorithm for attention. (b) Speculation method for computing QKT . (c) Speculation

method for computing PV . (d) A simple example of temporal token-level similarity exploitation.

III. SPECULATION-BASED SIMILARITY EXPLOITATION

A. Algorithm Overview

Fig. 3 demonstrates the overview of our speculation-based

similarity exploitation approach. We exploit similarities and

speculate important attention parts by pre-computing a small

frame-level importance map. Besides, we exploit similarities

in the input tokens of the query matrix Q, thereby sparsifying

it to accelerate the following computations.

B. Speculation-based Tile-level Similarity Exploitation

Importance Speculation in Attention. Guided by the

observation that a small fraction of tiles holds most attention

scores, we can perform importance speculation to accelerate

attention computation. We aim to speculate Z = XY at the

tile granularity of h × w, where Z can be P or A matrix in

attention. We first reduce X by computing the sum over every

h consecutive rows and Y over every w consecutive columns,

generating the reduced matrices Xr and Yr. We then compute

the reduced product Zr = XrYr and process Zr row by row,

greedily selecting the largest values until their sum exceeds a

pre-defined proportion of the aggregated sum. This provides an

importance map Zpred, an indicator of importance for the actual

computation of Z = XY . Fig. 3 (b) and Fig. 3 (c) illustrate the

reduction and speculation process for P = Softmax(QKT

√
d
)

and A = PV . The ideal granularity for P ’s computation is

N × N . For A, the optimal tile size is M × 1, where M is

the total number of tokens.

The overhead of speculation relative to original matrix

multiplication is approximately M+N2

NM for P and M+d
Md for

A. For the normal settings of 480p, 96-frame videos for

CogVideoX, they are 3.92% and 1.57%, respectively, which

are negligible. Despite some slight differences between our

speculated importance map for P and P ’s actual importance

map introduced by the Softmax operator, they incur nearly

no accuracy loss as most parts of them are the same.

Speculation-based Attention Computation. We quantize

the K,V matrices channel-wise with symmetric 8-bit quan-

tization for their channel-wise distribution pattern, obtaining

scale factors and the quantized forms Kq and Vq . We do not

quantize Q, as our token-level similarity exploitation sparsifies

its structure. During the computation of QKT and PV , we

choose to perform FP-INT multiplication for unimportant parts

and FP-FP multiplication for the rest, based on the frame-

level importance map acquired during the aforementioned

speculation. Thus, we significantly reduce over 65% FP-FP

multiplications to FP-INT multiplications.

C. Speculation-based Token-level Similarity Exploitation

We exploit Q’s token-level similarity to reduce computa-

tions in row dimension by speculating that tokens with similar

values also have similar outputs after attention. We adopt such

speculation in temporal and spatial dimensions in every layer,

allowing full utilization of token-level similarity.

At the temporal dimension, the token-level similarity ex-

ploitation is performed frame by frame. We set t as a pre-

defined window length, and for every token we process, we

choose a t × t window in the previous frame and perform a

similarity check with every token inside. We use the L2 norm

to represent the similarity between two tokens. Among the t×t
similarity values, we compare the minimum value with a pre-

defined threshold τ . The computation of this token is reduced



Fig. 4: (a) Our hardware architecture, SIMCORE, features (c) a LUT-based Computing Engine, and units that support our

algorithm: (b) Quantization Engine, (d) Sparsification Engine

Fig. 5: The LUT-based multiplier. Each LUT multiplier is

paired with a local table that prefetches and copies the inter-

mediate results for multiplication, eliminating bank conflicts.

if the minimum value is less than τ . Fig. 3 (d) illustrates our

temporal similarity exploitation.

In the spatial domain, we exploit token-level similarity by

grouping tokens in each frame. We choose a reference token

within each group and compute the similarity between every

other token and the reference token in this group. For every

non-reference token, we similarly check the threshold and

adopt the result of the reference token if it is met.

IV. BUFFERED LUT-BASED MULTIPLICATION

ARCHITECTURE

A. Overview of SIMCORE

We present SIMCORE, an end-to-end 3D-VGM accelerator

featuring a buffered LUT-based Computing Engine that ac-

celerates the computation of unimportant attention. SIMCORE

also includes additional architectural supports for the impor-

tance speculation in attention and the token-level similarity

exploitation. Fig. 4 shows our hardware overview.

B. LUT-based Computing Engine

The LUT-based Computing Engine (LUT-based CE), as

illustrated in Fig. 4 (c), includes an FP16 Engine that manages

FP-FP computations and a Mixed Engine that handles FP-

INT multiplication with a LUT Buffer. The FP16 Engine

deploys Element-Wise Units (EWU) to perform element-

wise computations for quantization and sparsification. It also

contains FP16 PEs that handle FP-FP matrix multiplication.

The Mixed Engine contains an array of LUT PEs, as

depicted in Fig. 5. We employ the observation that the products

between the 7-bit INT8 magnitudes and the 10-bit FP16

fractions can be precomputed, and they only occupy 128KB

on-chip buffer size. By storing these precomputed products in

the LUT Buffer, the FP-INT multiplication can be simplified

into one lookup in LUT and one shift in the exponent, thus

significantly reducing computations.

However, bank conflicts must be solved since different LUT

PEs may require the same intermediate results, which stalls

our LUT-based CE and deteriorates efficiency. Our solution

utilizes a group of local tables for each PE, whose multipliers

share the same FP16 operands. Before each FP-INT MAC, we

prefetch intermediate results by copying the table from the

LUT Buffer to each PE’s local tables. We leverage double-

buffer trick so that the cost of our prefetch strategy can be

hidden by the computation time of the multiplier.

C. Additional Architectural Support

Shown in Fig. 4 (b), the Quantization Engine is mainly com-

posed of a Prediction Unit (PU) and a Quantization Unit (QU).

The PU aggregates input matrices via a Reduction Tree and

multiplies the reduced matrices. It sorts the matrix, greedily

selects the highest values with its Sort&Select Unit(S&SU),

and stores the importance map in the Score Buffer. The



QU quantizes K and V into the 8-bit one’s complement

representation, where the last 7 bits represent magnitude.

Fig. 4 (d) shows the Sparsification Engine, which is com-

posed of a Sparsification Unit (SU), a Reorder & Recover Unit

(R&RU), and an Index Buffer. After the query matrix Q is

generated, the SU exploits token-level similarity by computing

the similarities and letting the Comparison Tree find the

highest similarity, which is compared to the threshold in the T

register. If the condition is satisfied, the Index Buffer will be

updated. The R&RU reorders Q to sparsified Qc and recover

A from sparsified Ac. For both reordering and recovering,

We traverse the index table, generating each index’s source

and destination addresses. Then, the data will be transferred

according to the index and the addresses.

V. ADAPTIVE GROUPING STRATEGY

A. Algorithm-Hardware Mapping Overview

We describe the MSA dataflow on SIMCORE. Other phases

in 3D-VGMs primarily involve FP-FP operations and element-

wise operations and do not use the devised engines.

Initially, Q and K are reduced, and the importance map for

P is generated in the Prediction Unit with the assistance of the

Special Function Unit (SFU) and S&SU. Concurrently, the SU

and QU produce sparsified Qc and quantized Kq , respectively.

The CE then computes S and P row-by-row, leveraging both

the FP16 Engine and Mixed Engine, guided by the importance

map of P . This row-by-row computation maximizes paral-

lelism and enables the fusion of P = Softmax
(

S√
d

)
and

A = PV . As every t rows of S are computed in parallel, they

are forwarded to the SFU to generate P . This row slice of P
is sent to the QE to obtain the importance map for A. Here,

we employ an adaptive grouping strategy for P (Sec. V-B).

Subsequently, V columns are reordered and grouped based on

the importance map for optimized resource utilization. Upon

completing the full attention process, the Recovery Unit in the

SE restores the Ac matrix to its original form.

B. Adaptive Grouping Strategy to Tame Workload Imbalance

Randomly distributed similar tokens lead to workload im-

balances in the sparsified Qc matrix. For instance, during

the attention computation phase, the workload of each PE

is imbalanced, necessitating the compression of Qc to utilize

computational resources fully. Such imbalance also occurs in

the importance map speculation for A, where we need to

recover Pc into P for speculation fully, and the distribution

of Pc’s indices is random and uneven. Moreover, the recovery

incurs significant memory overhead due to the separation of

similar token pairs in different frames.

We propose an adaptive grouping strategy to tame work-

load imbalance and integrate our frame-level and token-level

speculations seamlessly. Instead of recovering P from Pc,

we directly reduce Pc for subsequent speculation, as our

observations show that the value distribution in each column

of A in even, allowing such a strategy with no accuracy loss.

TABLE I: Accuracy of SIMPICKER in 3D-VGMs.

Component Method CLIPSIM ↑ VBench ↑

Open-Sora-Plan v1.2 Baseline 0.196 0.305

SIMPICKER (Ours) 0.196 0.305

CogVideoX-5B Baseline 0.304 0.311

SIMPICKER (Ours) 0.307 0.312

VI. EVALUATION

A. Experimental Setup

Hardware Setup. We implement SIMCORE using Verilog.

We set CE comprising 16×8 LUT PEs with 8 LUT multipliers

in each, 8×8 FP16 PEs with 8 multipliers in each, and 4×8

EWUs. The configurations of the QE and SE are aligned

with CE’s parallelism, enabling pipelined operator processing.

The on-chip buffer includes a 208KB Global Buffer, 256KB

Lookup Table, 128KB Lookup Table buffer, 16KB Index

buffer, 16KB Quantization buffer, and 4KB Score buffer.

The area and power of logic units are evaluated at 1 GHz

frequency using Synopsys Design Compiler under a 32nm

process. Cacti 7 [26] are used for on-chip buffer evaluations.

Models and Datasets. We evaluate SIMPICKER on two

SOTA 3D-VGMs, CogVideoX-5B [12] and Open-Sora-Plan

v1.2 [14]. CogVideoX-5B concatenates text prompt tokens

and video tokens together without MCA, while Open-Sora-

Plan v1.2 still uses cross-attention to capture the correla-

tion between prompt and video. We evaluate the impact of

SIMPICKER on model accuracy on the VBench dataset [27],

a carefully designed benchmark containing comprehensive

prompts that describe the scene in detail.

Tasks and Metrics. We evaluate the quality of videos

generated by SIMPICKER with two metrics, CLIPSIM [28]

and the evaluation model in VBench [27]. CLIPSIM employs

CLIP [28] to evaluate the similarity between the text prompt

and the generated video. The evaluation metric of VBench

gives a comprehensive analysis from multiple perspectives.

Baselines. To compare the performance and energy effi-

ciency of SIMPICKER with SOTA works, we run open-sourced

3D-VGMs on the NVIDIA A100 GPU [29]. The inference

latency and power of A100 are measured by python time

library [30] and CUDA event API [31]. We also compare sev-

eral SOTA ASIC accelerators, including two DiT-based works

(InterArch [22] and CMC [32]) and two attention-based works

(Sanger [20] and FACT [21])uu. For a fair comparison, we

unify the number of FP16 MACs, on-chip buffer capacity, and

frequency with those of SIMCORE. The off-chip bandwidth

is set to 128GB/s. We design and implement a cycle-level

behavioral simulator to model the operational execution of

different accelerators. The CODEC auxiliary module in CMC

is excluded from the evaluation.

B. Evaluation of Model Accuracy

We choose the original models with FP16 precision as the

baseline. For SIMPICKER, the token-level similarity threshold

is set to 2.5, while the proportion of the aggregated sum

of important tiles in speculation is 0.65. Table. I shows that

SIMPICKER has no accuracy loss on both metrics.



Fig. 6: Overall Performace of SIMPICKER. The horizontal axis represents [frames, resolution] of the generated video.

Fig. 7: Ablation studies for (a) speculation-based similarity exploitation, (b) buffered LUT-based multiplication architecture,

and (c) adaptive grouping strategy. The horizontal axis represents [frames, resolution].

TABLE II: The area and power of SIMCORE.

Component Area (mm2) Power (mW )

Computing Engine

16×8 LUT PEs 1.23 47.10

8×8 FP16 PEs 2.71 323.07

4×8 EWUs 0.04 3.58

Quantization Engine
Prediction Unit 0.02 1.40

Quantization Unit 0.03 1.89

Spasification Engine
Sparsification Unit 0.14 16.36

Reorder and Recovery Unit 0.06 2.69

Special Function Unit 0.23 11.02

628KB On-chip buffer 1.47 61.67

Total (32nm) 5.93 468.79

C. Hardware Analysis

The area and power of SIMCORE are shown in Table. II.

The total area of SIMCORE is 5.93 mm2, and the power

is 468.79 mW . The Computing Engine is the main module,

accounting for the largest proportion of 67%. The additional

Quantization Engine and Sparsification Engine are only 0.25

mm2, accounting for 4.21% of the total area.

D. Overall Performance

For both models, we evaluate the end-to-end latency and

the power consumption among NVIDIA A100 GPU [29] and

the ASIC accelerators under the same prompt and workload.

Performance with GPUs. For NVIDIA A100 GPU,

SIMPICKER achieves 5.21× speedup on average due to our-

buffered LUT-based FP-INT multiplication architecture that

efficiently supports mixed-precision multiplication. Besides,

SIMPICKER also achieves an average of 17.92× energy ef-

ficiency since our adaptive grouping strategy fully utilizes the

hardware computing resources. The gap between SIMPICKER

and GPU further expands when the video length increases,

showing that SIMPICKER is also suitable for scalable settings.

Performance with ASIC accelerators For the SOTA

ASIC accelerators, our SIMPICKER achieves an average 1.49×
speedup and 1.87× energy efficiency compared to DiT-based

accelerators CMC and InterArch. For attention-based accel-

erators, we get an average 1.41× speedup and 1.33× energy

efficiency for Sanger and FACT.

E. Ablation Study

Speculation-based similarity exploitation algorithm. We

test SIMPICKER’s end-to-end latency with a naive algorithm

and the algorithm that only exploits token-level similarity in

our architecture under the setting of no accuracy loss. As

shown in Fig. 7 (a), SIMPICKER increases the speedup by

an average of 2.01×, which shows that our algorithm can

effectively exploit the similarity in both frame-level and token-

level. To be mentioned here, GPU cannot fully support our

algorithm since there’s an FP-INT multiplication.

Buffered LUT-based multiplication architecture. Exper-

iments are taken to evaluate the end-to-end latency of our

model compared to the naive one and a naive one equipped

with a sparsification engine. The naive architecture only has an

FP16 Engine and a Quantization Engine. As shown in Fig. 7

(b), such design significantly impacts the end-to-end latency

of 1.45× on average, which indicates that our architecture can

effectively support our algorithm.

Adaptive grouping strategy. As illustrated in Fig. 7 (c),

we evaluate SIMPICKER’s latency and breakdown with and

without the adaptive reduction strategy. Results show the adap-

tive grouping strategy achieves a 1.10× speedup compared

to a workload-imbalanced one. That’s because token-level

similarities are harder to exploit in 3D-VGMs due to their

capabilities of generating more continuous video than their

2D+1D counterparts, leading to a low ratio of similar tokens.

VII. CONCLUSION

In this paper, we propose SIMPICKER, a comprehensive

attention-aware algorithm-hardware co-design for 3D-VGMs

inspired by video processing methods. SIMPICKER achieves

5.21×, 1.45× speedup and 17.92×, 1.63× energy efficiency

compared to NVIDIA A100 GPU and SOTA accelerators. We

hope that more works can be inspired and existing methods in

video processing can be harnessed to boost video generation.
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