
Enabling Fast 2-bit LLM on GPUs: Memory Alignment, Sparse
Outlier, and Asynchronous Dequantization

Jinhao Li∗
Shanghai Jiao Tong University

China

Shiyao Li∗
Tsinghua University & Infinigence-AI

China

Jiaming Xu∗
Shanghai Jiao Tong University &

Infinigence-AI
China

Shan Huang
Shanghai Jiao Tong University

China

Yaoxiu Lian
Shanghai Jiao Tong University

China

Jun Liu
Shanghai Jiao Tong University

China

Yu Wang
Tsinghua University

China

Guohao Dai†
Shanghai Jiao Tong University &

Infinigence-AI
China

daiguohao@sjtu.edu.cn

ABSTRACT
Large language models (LLMs) have demonstrated impressive abili-
ties in various domains while the inference cost is expensive. Many
previous studies exploit quantization methods to reduce LLM in-
ference cost by reducing storage and accelerating computation.
The state-of-the-art methods use 2-bit quantization for mainstream
LLMs (e.g. Llama2-7b, etc.). However, challenges still exist in reduc-
ing LLM inference cost with 2-bit quantization: (1) Nonnegligible
accuracy loss for 2-bit quantization. Weights are quantized by
groups, while the ranges of weights are large in some groups, re-
sulting in large quantization errors and nonnegligible accuracy
loss (e.g. >3% for Llama2-7b with 2-bit quantization in GPTQ and
Greenbit). (2) Limited accuracy improvement by adding 4-bit
weights. Increasing 10% extra average bit more 4-bit weights only
leads to <0.5% accuracy improvement on a quantized Llama2-7b
model. (3) Time-consuming dequantization operations on
GPUs. Mainstream methods require a dequantization operation to
perform computation on the quantized weights, and the 2-order de-
quantization operation is applied because scales of groups are also
quantized. These dequantization operations lead to >50% execution
time, hindering the potential of reducing LLM inference cost.

To tackle these challenges and enable fast and low-cost LLM
inference on GPUs, we propose the following techniques in this
paper. (1) Range-aware quantization with memory alignment.
We point out that the range of weights by groups varies. Thus,
we only quantize a small fraction of groups with the larger range
∗These authors contributed equally to this work.
†Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’24, June 23–27, 2024, San Francisco, CA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

End-to-end latency reduction

Runtime cost/energy reduction considering both power and latency

Hardware cost reduction considering the price and 5-year service life period

Llama2-7b
1.74x 2.53x 2.81x

ChatGLM3-6b
1.40x 2.70x 2.75x

Figure 1: Benefit of end-to-end speedup, runtime inference
cost/energy reduction, and hardware cost reduction on main-
stream LLMs.

using 4-bit with memory alignment consideration on GPUs. (2)
Accuracy-aware sparse outlier.We point out that the distribution
of the sparse outliers with larger weights is different in 2-bit and
4-bit groups, and only a small fraction of outliers require 16-bit
quantization. Such design leads to >0.5% accuracy improvement
with <3% average increased bit for Llama2-7b. (3) Asynchronous
dequantization.We point out that calculating the scales of each
group is independent of the loading weights of each group. Thus,
we design the asynchronous dequantization on GPUs, leading to up
to 3.92× speedup. We conduct extensive experiments on different
model families and model sizes. We achieve 2.85-bit for each weight
considering all scales/zeros for different models. The end-to-end
speedup for Llama2-7b is 1.74× over the original model, and we
reduce both runtime cost and hardware cost by up to 2.70× and
2.81× with less GPU requirements.

1 INTRODUCTION
Large language models (LLMs) demonstrate remarkable capabilities
in various domains, excelling in tasks like natural language un-
derstanding and generation [9, 20]. However, their computational

ar
X

iv
:2

31
1.

16
44

2v
1

 [
cs

.L
G

]
 2

8
N

ov
 2

02
3

https://doi.org/10.1145/nnnnnnn.nnnnnnn

DAC ’24, June 23–27, 2024, San Francisco, CA Jinhao Li, Shiyao Li, Jiaming Xu, Shan Huang, Yaoxiu Lian, Jun Liu, Yu Wang, and Guohao Dai

MethodologiesChallenges Contributions

>3% accuracy loss
for 2-bit quantization

<0.5% accuracy
improvement by

adding 4-bit weights

>50% dequantization
overheads on GPU

LossMethods

5.6%SOTA publication
[ICLR 2023]

GPTQ
[9]

3.2%SOTA
on arXiv

Greenbit
[11]

Average bit

2.0 2.5 3.0

Accuracy
68%

66%

64%

62%

<0.5%
accuracy↑

>10%
extra bit

32.7%

19.1%43.4%

4.8% 1-order
dequantization
2-order
dequantization
matrix
multiplication
others

2-bit
quantization

4-bit
quantization

25%
groups

2b 2b 2b 3b 3b 4b

3b 1b 3b 1b 4b 1b

16b

1-order scale 1-order zero

2-order zero and padding
alignment

16b

70% outlier in 4-bit groups

30% outlier in 2-bit groups

Range-aware Quantization
with Memory Alignment

(Section III)

Accuracy-aware
Sparse Outlier

(Section IV)

Asynchronous
Dequantization

(Section V)

Average bit

2.0 2.5 3.0

Accuracy
68%

66%

64%

62%

16-bit sparse outlier in 2-bit groups

0.6%
accuracy↑

<3%
extra bit

2-order
dequantization

load
weight

load inputcompute
1-order scale

compute
original weight

matmul

load weight

compute 1-order scale

matmul

compute original weight

load input

1-order
dequantization

Figure 2: Challenges in fast and low-cost quantized LLM inference. We propose three novel contributions: range-aware quanti-
zation with memory alignment, accuracy-aware sparse outlier, and asynchronous dequantization, to solve these challenges.

expense during inference is noteworthy. For instance, OpenAI re-
veals that the GPT-4 Turbo incurs a cost of millions of dollars each
day [22]. This substantial cost underscores the financial consid-
erations associated with deploying and utilizing such advanced
language models [23]. Many previous studies exploit quantization
methods to reduce LLM inference cost by reducing storage and
accelerating computation [8, 11, 14, 15, 26]. The state-of-the-art
methods have realized 2-bit quantization for mainstream LLMs,
exemplified by the Llama-2 family [25]. These methods quantize
weights by group to improve accuracy and the scales are also quan-
tized (2-order) to further reduce average bit [12].

However, there are still existing challenges of reducing LLM
inference cost with the 2-bit quantization method. (1) Nonnegligi-
ble accuracy loss for 2-bit quantization. Both the post-training
quantization (PTQ, e.g., GPTQ [11]) and the quantization-aware
training (QAT, e.g., LLM-QAT [16] and Greenbit [12]) approaches
incur the 3.2% to 5.6% accuracy loss for Llama2-7b with 2-bit quan-
tization [11, 12]. (2) Limited accuracy improvement by adding
4-bit weights. LLMs quantized with 4-bit exhibit an impressive
ability to retain accuracy, showcasing less than 1% accuracy loss.
Consequently, it is a common practice to improve accuracy by
adding 4-bit quantization. However, Figure 2 left middle illustrates
that increasing 10% extra average bit with more 4-bit weights only
leads to <0.5% accuracy improvement on a quantized Llama2-7b
model. (3) Time-consuming dequantization operations on
GPUs. Mainstream methods require a dequantization operation
to perform computation on 2-bit weights. Furthermore, a 2-order
dequantization operation is applied because the scales of groups
are also quantized. Figure 2 left bottom shows that, the dequanti-
zation operation takes over 50% of the total execution time. These
challenges become the crucial factors impeding fast and low-cost
LLM inference.

In response to these challenges, we enable fast and low-cost LLM
inference on GPUs with the following contributions in this paper:

• Range-aware quantization with memory alignment.
We point out that the range of weights by groups varies.
Thus, only 25% of the weights are quantized using 4-bit with

memory alignment. Such a method reduces the accuracy loss
for 2-bit Llama2-7b quantization from 8.7% to 2.9%.
• Accuracy-aware sparse outlier.We point out that only a
small fraction of outliers exist in weights quantized using
2-bit. We quantize these sparse outliers with <3% increased
average weight bit and improve the accuracy by >0.5%.
• Asynchronous dequantization.We point out that calcu-
lating the scales of each group is independent of the loading
group weights. Thus, we design the asynchronous dequanti-
zation and accelerate the GPU kernel by up to 3.92×.

We conduct extensive experiments on different model families
(e.g., Llama2 [25] and ChatGLM3 [28]) and model sizes (e.g., Llama2-
7b to Llama2-70b). We achieve 2.85-bit for each weight considering
all scales/zeros for different models. The end-to-end speedup for
Llama2-7b is 1.74×, and we reduce both runtime cost and hardware
cost by up to 2.70× and 2.81× with less GPU requirements.

2 PRELIMINARIES AND BACKGROUNDS
2.1 Uniform Quantization
A group of weights with range of (𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥) are quantized to
range (0, 2𝑁 −1). Scale (𝑠) and Zero-point (𝑧) map the floating point
weights to 𝑁 bits integers. Scale is the half-precision step size of the
quantizer and Zero-point is an 𝑁 bits integer [19]. The quantization
and dequantization operations are:

𝑠 =
𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛

2𝑁 − 1
(1)

𝑧 = 𝑟𝑜𝑢𝑛𝑑 (−𝑤𝑚𝑖𝑛

𝑠
) (2)

row_ptr

col_ind

values

CSR

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚

wastewaste
quantization range

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚

quantization range

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚

outliers

large quantization error small quantization error

Retain outlier

0 1 2 3 5 6 7 9 10

row_ptr (int32)

col_ind (int32)
7 0 5 2 4 0 4 1 6 3

values (float32)
a b c d e f g h i j

Outlier Storage Pattern

7 a 0 b 5 c 2 d 4 e

col_ind+values (int16+float16)
0 f 4 g 1 h 6 i 3 j

0 1 2 3 5 5 6

5 0 3 1 3 3

a b c d e f

a
b

c
d e

f

quantized weights sparse outliersWeights (FP16)

0 1 2 3 4 5
0
1
2
3
4
5

+

Figure 3: Example of quantization errors.

Enabling Fast 2-bit LLM on GPUs: Memory Alignment, Sparse Outlier, and Asynchronous Dequantization DAC ’24, June 23–27, 2024, San Francisco, CA

Input
Channel

𝑔𝑔1

① ② ③ ① ② ③

1-order zeros&scales

① ② ③

zero_1st scale_1st

16x2b 16x2b 16x2b 8x4b

① ② ③

2-order zeros

retain outliers

2-order scale

: load weight

: load weight_last

: 2bit

: 3bit

: 4bit

: 16bit

: bubble

: quantize

𝑔𝑔2

FP16 INT2

𝑔𝑔2
𝑔𝑔1

INT2 INT4

1𝑠𝑠𝑠𝑠𝑧𝑧 1𝑠𝑠𝑠𝑠 𝑠𝑠𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼
2𝑛𝑛𝑛𝑛 𝑠𝑠

2𝑛𝑛𝑛𝑛 𝑧𝑧
INT4

FP16

𝑊𝑊𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

+ + +

𝑊𝑊𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

FP16 INT4 INT4 FP16

𝑧𝑧 𝑠𝑠𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼

+ +O
C

FP16

8x4b

split
2b 2b 2b 3b 3b 4b

16b

3b 1b 3b 1b 4b 4b

16b

1𝑠𝑠𝑠𝑠 𝑧𝑧_𝑠𝑠

𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼

2𝑛𝑛𝑛𝑛 𝑧𝑧

1𝑠𝑠𝑠𝑠 𝑠𝑠1𝑠𝑠𝑠𝑠 𝑧𝑧

padding

𝑧𝑧 4b 𝑠𝑠 16b2𝑛𝑛𝑛𝑛 𝑠𝑠 16b

Range Analysis Range-aware 2/4-bit Quantization Memory Alignment
2-order quantize 𝒔𝒔1-order quantize 𝑾𝑾𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇

𝑠𝑠

FP16

de
te

ct
 o

ut
lie

rs

4-bit quantization 2-bit quantization Alignment for vector load

Alignment for storage

no
accuracy loss

<0.02 average bit
overheads

quantized weights

2-bit
quantization

4-bit
quantization

Range distribution

weight matrix

Output
Channel

OC

IC

Figure 4: Overview of range-aware quantization method. We first analyze the range distribution of different input channels,
and then quantize the weights with range-aware 2/4-bit quantization. Last, we propose three techniques for memory alignment.

𝑤𝑖𝑛𝑡 = 𝑐𝑙𝑎𝑚𝑝 (0, 2𝑁 − 1, 𝑟𝑜𝑢𝑛𝑑 (𝑤
𝑠
) + 𝑧) (3)

𝑤 𝑓 𝑙𝑜𝑎𝑡 = (𝑤𝑖𝑛𝑡 − 𝑧) × 𝑠 (4)
For 2-bit quantization, weights with input dimensions are quan-

tized by group, while the scales of groups within output dimensions
are also quantized to further reduce the average bit. Here, the aver-
age bit, denoted as 𝑏𝑖𝑡 with 1-order and 2-order quantization is as
follows:

𝑏𝑖𝑡 =


𝑁 + 𝑁 + 16

𝑔1
, 1-order (5)

𝑁 + 𝑁 + 𝑁2
𝑔1

+ 𝑁2 + 16
𝑔1 × 𝑔2

, 2-order (6)

where 𝑔𝑖 represents the size of group and 𝑁2 represents the bit
width with 2-order.

2.2 Mixed-precision Quantization
In LLMs, certain weights exhibit disproportionately magnitudes
compared to the majority. As shown in Figure 3, by applying nor-
mal uniform quantization, the quantization range is expanded by
these outliers and thus, the majority of weights are quantized with
few steps, which leads to large quantization error. Mixed-precision
quantization methods like SpQR and SqueezeLLM filter and retain
outliers that negatively impact quantization error and store out-
liers with 16-bit sparse matrix [8, 14]. These methods quantize the
weights matrix into a dense matrix and a 16-bit sparse matrix. The
Compressed Sparse Row (CSR) is used to represent sparse matrices,
optimizing memory usage. In CSR, three arrays encapsulate the
matrix data. The values array (values) efficiently arranges non-zero
elements in row-major order, while the column indices (col_ind)
array meticulously records the corresponding column index for
each non-zero element. The row pointer (row_ptr) array serves as
a guide, storing the starting index for each row in the values array.
Outlier retention of weights is common for low-bit quantization in
LLMs. Each outlier is stored using one 32-bit combination: a 16-bit
weight value and a corresponding 16-bit column index. Addition-
ally, for every row, a 32-bit number is allocated to store the total
count of outliers up to that row. This results in an overall 32-bit
storage overheads for each weight outlier.

4-bit
2-bit

quantization error

10x

accuracy

1%4-bit
2-bit

4-bit
2-bit

16x quantization error
20x accuracy loss

4-bit
2-bit

18x quantization error
25x accuracy loss

Llama2-7b ChatGLM3-6b

Llama2-7b
25% groups

with large range

Llama2-7b

ChatGLM3-6b

ChatGLM3-6b

75% groups
with small range

(a)

(b)

Figure 5: (a) The challenge of quantization with 2-bit is large
quantization errors and accuracy loss. (b) The range of 25%
groups is large in Llama2-7b and ChatGLM3-6b.

3 RANGE-AWARE QUANTIZATIONWITH
MEMORY ALIGNMENT

Challenge. The quantization method is widely used to reduce LLM
inference cost [8, 11, 15] by reducing storage and accelerating com-
putation. Quantization uses discrete values to represent continuous
weights, leading to quantization errors. We depict the distribution
of weights in typical LLMs and the comparison of using 2-bit and
4-bit quantization in Figure 5(a). We find that the 2-bit approach
leads to 16× ∼ 18× larger quantization errors and further results in
20× ∼ 25× larger accuracy loss. Thus, the key challenge is that even
the state-of-the-art 2-bit methods still suffer from >3% accuracy
loss for Llama2-7b [11, 12].

Motivations and Insights. Some previousmethods like SpQR [8],
SparseGPT [10] and AWQ [15] have analyzed that the quantiza-
tion errors are large in specific groups, so we further depict the
range of weights per group, as shown in Figure 5(b). The range of
weights exhibits different distributions for different groups, and
only a small fraction of groups show a large range while the others
show a small range. Applying 4-bit quantization to these groups
with a large range can reduce the quantization error. Thus, our
key insight is, only a small fraction of weights requires 4-bit

DAC ’24, June 23–27, 2024, San Francisco, CA Jinhao Li, Shiyao Li, Jiaming Xu, Shan Huang, Yaoxiu Lian, Jun Liu, Yu Wang, and Guohao Dai

quantization and average bit can be still reduced by applying
2-bit quantization on the other groups.

𝑏𝑖𝑡 = 𝛼 × (2 + 2 + 𝑁2
𝑔1

+ 𝑁2 + 16
𝑔1𝑔2

) + (1 − 𝛼) × 4 (7)

Approach: Range-aware Quantization. In Figure 4, we depict
the quantization flow of weights. Notably, weights are quantized by
group to reduce accuracy loss while the groups with a large range
still require larger bit-width to improve accuracy. Therefore, we
first analyze the range distribution by group. The range of groups
in the same input channels is merged to streamline the complexity
of hardware computation. Concretely, weights are divided by the
Hessian inverse matrix to get the calibrated weights, leveraging
the Hessian inverse matrix’s ability to discern weight importance.
Subsequently, the calibrated weights are squared to magnify the
range variance. The amplitude of each input channel is computed
as follows:

𝐴𝑚𝑝𝑖 =

𝑂𝐶∑︁
𝑗=0

𝑊 2
𝑖 𝑗

𝐻2
𝑖

(8)

Thus, the range of weights by groups is equivalent to the ampli-
tude variance in the grouped input channels. Then, we analyze the
variance and obtain the information that the input channels with
large variance require 4-bit quantization and others require 2-bit
quantization. According to the analysis results, we apply the QAT
finetuning approach to reduce the quantization error. In the for-
ward process of QAT, the weights with a large range are quantized
and then dequantized with 4-bit by group while others are with
2-bit. After finetuning, we use the same analysis results to quantize
different grouped input channels with different bit-width. For small
range input channels, we first do 2-bit 1-order quantization for the
weights𝑊𝑓 𝑙𝑜𝑎𝑡 by group 𝑔1 in the direction of input channels to
get the quantized weight𝑊𝐼𝑁𝑇 , 1-order zeros 1𝑠𝑡𝑧 and scales 𝑠 .
To further reduce the average bit, the scales 𝑠 are also quantized
with 4-bit by group 𝑔2 in the direction of output channels (2-order
quantization) to get 1-order quantized scales 1𝑠𝑡𝑠 , 2-order zeros
2𝑛𝑑𝑧 and scales 2𝑛𝑑𝑠 . During 2-bit quantization, outliers are also
detected and retained to reduce accuracy loss. Then, the weights in
large range input channels are quantized with 4-bit.

Approach: Memory Alignment. As illustrated in Figure 4, the
quantized weights are split into two quantized weight matrixes. The
first matrix stores 3 groups of 2-bit quantized weights (the size of
group is 16) and 8 4-bit quantized weights into continuous memory.
The other matrix stores 8 remaining 4-bit quantized weights into
independent memory. Thus, the memory access for each thread in
GPU is memory-aligned. Then, 1-order zeros 1𝑠𝑡𝑧 and scales 1𝑠𝑡𝑠
are packed together and two of three scales are compressed into
two 3-bit to fill 16-bit memory without paddings while only the
2-order zeros are stored with paddings. These memory alignment
methods preserve accuracy loss and only leads to <0.02 average bit
overheads.

4 ACCURACY-AWARE SPARSE OUTLIER
Challenge. The mixed-precision quantization method can effi-
ciently reduce quantization errors of channels with large variations.
However, there are still some outliers sparsely distributed in both 2-
bit and 4-bit channels. Outliers in 2-bit channels lead to significant

Average bit

2.0 2.5 3.0

Accuracy
68%

66%

64%

62%

0.2% 16-bit outliers √

more 4-bit channels×

outliers in 2-bit
channels
30.2%

outliers in 4-bit
channels
69.8%

Figure 6: The distribution of outliers in Llama2-7b after quan-
tization with 25% 4-bit channels.

quantization errors. In order to reduce the quantization error of
these outliers, one straightforward approach is to continue adding
4-bit channels with the increased average bit. Nevertheless, the
accuracy improvement of adding 4-bit channels is limited because
these outliers are sparsely distributed. Figure 2 left middle shows
that, increasing >10% extra bit only leads to <0.5% accuracy improve-
ment when adding more 4-bit channels. Thus, the key challenge
lies in reducing the quantization error of these sparse outliers with
less increased average bit.

Motivation and Insights. Besides straightforwardly adding
4-bit channels, another way to reduce quantization errors is to use
the 16-bit weights for these sparse outliers. Previous designs like
SpQR [8] and SqueezeLLM [14] introduce ∼1% 16-bit weights to
represent these outliers with the corresponding sparse format(e.g.,
CSR). Each sparse outlier requires at least one 16-bit for the weight
representation and one 16-bit for the position. Thus, introducing
1% 16-bit sparse outliers leads to (16 + 16 − 2) × 1% = 0.3 extra
average bit, which still increases >10% extra bit. We depict the
sparse outlier distribution in 2-bit and 4-bit channels of Llama2-7b
in Figure 6 left. Although only 25% channels are quantized using
4-bit in our practice, ∼70% outliers are distributed in these 4-bit
channels. Previous designs using 4-bit quantization [11, 15] lead
to negligible accuracy loss, proving that 4-bit quantization is a
promising way for accurate LLM inference. Thus, our key insight is,
only a small fraction (e.g., ∼30%) of sparse outliers are in the
2-bit channels and require 16-bit quantization to maintain
the algorithm accuracy.

Approach: Accuracy-aware Sparse Outlier. Based on the
mixed 2-bit/4-bit quantization proposed in Sec. 3, we quantize a
small fraction (e.g., 25%) of weights using 4-bit by channels. We pro-
file the accuracy improvement by continuing to add 4-bit channels.
Figure 6 right shows that, the accuracy improvement is limited by
adding >25% 4-bit weights. We only consider the average bit of
weights, while the scales and zeros are not considered. The actual
average bit is also related to the group size. The smaller group size
leads to more scales and zeros for each group, resulting in a larger
average bit [12]. In practice, we set the group size to 16, which
is larger than Greenbit [12] and contributes to a smaller average
bit. Instead of adding 4-bit channels when the average bit reaches
2.5, we represent sparse outliers only in 2-bit channels using 16-bit
quantization. In practice, we finetune the model and restrict the
ratio of sparse outliers in 2-bit channels to 0.2%. Thus, we increase
(16 + 16 − 2) × 0.2% =0.06 average bit, which is less than 3%. For
Llama2-7b, the accuracy is increased by 0.6%.

Enabling Fast 2-bit LLM on GPUs: Memory Alignment, Sparse Outlier, and Asynchronous Dequantization DAC ’24, June 23–27, 2024, San Francisco, CA

Algorithm 1 GEMV with 2/4-bit dequantization algorithm
Input: 𝑊𝐼𝑁𝑇 : quantized weight, 𝑉 : input vector
Output: 𝑂 : output vector
1: load 1𝑠𝑡𝑠 to SharedMem
2: load 2𝑛𝑑𝑧, 2𝑛𝑑𝑠 to SharedMem
3: syncthreads
4: load𝑊𝐼𝑁𝑇 and 1𝑠𝑡𝑧 to SharedMem
5: 1𝑠𝑡𝑠 ← 𝑑𝑒𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒 (1𝑠𝑡𝑠, 2𝑛𝑑𝑧, 2𝑛𝑑𝑠)
6: syncthreads
7: load 𝑣
8: 𝑤 𝑓 𝑙𝑜𝑎𝑡 ← 𝑑𝑒𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒 (𝑊𝐼𝑁𝑇 , 1𝑠𝑡𝑧, 1𝑠𝑡𝑠)
9: syncthreads
10: 𝑝𝑠𝑢𝑚 ← 𝑝𝑠𝑢𝑚 +𝑤 𝑓 𝑙𝑜𝑎𝑡 × 𝑣
11: 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑟𝑒𝑑𝑢𝑐𝑒 (𝑶, 𝑝𝑠𝑢𝑚)

Approach: Sparse Outlier Format and GPU Kernel. We
utilize the CSR format used in previous designs [8, 14] for sparse
outliers representation, and apply GPU kernels in the NVIDIA
cuSPARSE library [2] to perform matrix multiplication on these
outliers. In practice, only 0.2% weights are quantized using 16-bit,
and the execution time on these sparse outliers is much faster (e.g.,
>10× according to our profiling) than the computation on the dense
2-bit/4-bit weights.

5 ASYNCHRONOUS DEQUANTIZATION
Challenge. Because the weights are quantized by 2-bit and 4-bit,
it requires the dequantization operation to restore the weights
to 16-bit before performing the multiplication between the input
and weights. We use 1-order and 2-order quantization to scale the
weights and scales of each group. Previous designs (e.g., SPQR[8],
LLM-QAT[16]) use the synchronous dataflow (i.e., performing de-
quantization after loading all weights), resulting in >50% overheads
of end-to-end execution time. Thus, the key challenge is the time-
consuming synchronous dequantization operation becomes the
bottleneck in accelerating LLM inference after quantization.

Motivation and Insights. The 1-order and 2-order quantization
requires two synchronous dequantizations in dataflow. However,
the 2-order dequantization for calculating the scales of each group
is independent of the weights of each group for the 1-order dequan-
tization. Moreover, the 1-order dequantization for restoring the
weights to 16-bit is independent of the input data of multiplication.
Thus, our key insight is calculating the scales of each group can
be overlapped with loading weights of each group in GPU
kernel.

Approach: Asynchronous dequantization. Based on the in-
sights above, we design the asynchronous dequantization dataflow
as illustrated in Figure 7 on GPUs. With the help of the shared
memory, we can overlap the calculating scales of each group and
the loading weights of each group. Further, we use CUDA primitive
__shfl_down_sync() to reduce the result inside a warp efficiently.
From the perspective of memory access, we apply vector load (e.g.
double4) technique to load quantized weights, activation, scales
and zeros to minimize the numbers of memory access. Algorithm 1
shows the four main parts of our kernel. The preprocess (line 1 ∼
3) loads the zeros (2𝑛𝑑𝑧) and scales (1𝑠𝑡𝑠 and 2𝑛𝑑𝑠) for the 2-order

...

t1

…

OC

block
w0

t0

t31

w1w2w3

...

double4
load

loop
0

loop
1

wi : warpi
ti : threadi

parameter

2
ndz&

s, 1
sts

load 2-order
dequant.

W
IN
T , 1

stz

shared m
em

ory

load

dequantized
1
sts

weight

1-order
dequant.

…

w16…

input

IC

1

2

2

3

3

4×

shared memoryV

o0 o1 o2 o3
shared m

em
ory

Figure 7: Asynchronous dequantization on GPUs.

Table 1: Algorithm accuracy with zero-shot performance

Method 𝑏𝑖𝑡 PIQA/Hell./Wino./ARC-e Average

Llama2-7b 16 77.2%/56.1%/68.7%/70.2% 68.0%
GPTQ 3 71.7%/48.2%/61.2%/56.1% 59.3%
Greenbit 2.91 77.2%/53.8%/65.8%/62.5% 64.8%
Ours (group=16) 2.85 75.9%/51.3%/66.4%/66.9% 65.1%
Ours (0.2%) 2.91 76.1%/52.0%/66.8%/67.2% 65.7%

Llama2-13b 16 78.8%/59.7%/69.6%/73.3% 70.4%
GPTQ 3 75.2%/56.1%/64.3%/64.2% 64.0%
Ours (group=16) 2.85 76.9%/55.6%/66.2%/69.2% 67.0%
Ours (0.2%) 2.91 77.3%/55.8%/66.7%/69.5% 67.6%

Llama2-70b 16 81.1%/64.0%/77.0%/77.7% 75.0%
Ours (group=8) 2.91 80.5%/62.1%/74.9%/76.5% 73.5%

ChatGLM3-6b 16 70.8%/49.4%/61.3%/51.1% 58.1%
Ours (group=8) 2.91 66.7%/44.7%/59.4%/48.5% 54.8%

dequantization, corresponding to ➀ in Figure 7. Then the 2-order
dequantization and loading weight𝑊𝐼𝑁𝑇 and 1𝑠𝑡𝑧 (line 4) provide
the scales, zeros and weights for the 1-order dequantization, corre-
sponding to operation ➁. The third part is 1-order dequantization
and loading input vector 𝑉 [·] (line 7 ∼ 8), corresponding to op-
eration ➂. After that, the multiplication (line 10), operation ➃ in
Figure 7 is performed. The final part (line 11) is used to reduce data
from all threads.

6 EXPERIMENTAL RESULTS
6.1 Experimental Setup
Benchmarks. We conduct comprehensive experiments on the
Llama2-7b model family [25] and the ChatGLM3-6b model [28]. The
accuracy of the introduced quantized LLMs is assessed across four
zero-shot benchmarks, namely PIQA [4], HellaSwag [27], Wino-
Grande [24], ARC-e [6]. We use 2-order weight-only quantization
to evaluate the performance.

DAC ’24, June 23–27, 2024, San Francisco, CA Jinhao Li, Shiyao Li, Jiaming Xu, Shan Huang, Yaoxiu Lian, Jun Liu, Yu Wang, and Guohao Dai

Table 2: Comparison of end-to-end speedup, runtime cost, and hardware cost.

Model Method GPU Power(W) Token/s End-to-end speedup Runtime cost reduction Hardware cost reduction

Llama2-7b

PyTorch 3090×1 290/350 25.9 1× 1× 1×
GPTQ 3090×1 320/350 37.5 1.45× 1.31× 1.39×
Our 3090×1 350/350 45.2 1.74× 1.44× 1.60×
Our 2080×1 150/215 34.0 1.31x 2.53× 2.81×

PyTorch 3090×2 240/350 22.0 1× 1× 1×
Llama2-13b GPTQ 3090×1 270/350 23.1 1.06× 1.88× 2.02×

Our 3090×1 250/350 25.0 1.14× 2.19× 2.24×
PyTorch A100×2 400/400 38.5 1× 1× 1×

Llama2-70b GPTQ A100×1 400/400 46.5 1.21× 2.42× 2.42×
Our A100×1 400/400 50.5 1.31× 2.62× 2.42×

PyTorch 3090×1 350/350 32.5 1× 1× 1×
ChatGLM3-6b Our 3090×1 350/350 40.0 1.23× 1.23× 1.23×

Our 2080×1 170/215 45.5 1.40× 2.70× 2.75×

0.0
1.0
2.0
3.0
4.0

(1,8192,8192) (1,8192,28672) (1,28672,8192) (1,8192,8192) (1,8192,28672) (1,28672,8192)

Sp
ee
du
p @RTX 3090 @Telsa A100

0.0
1.0
2.0
3.0
4.0

(1,5120,5120) (1,5120,13824) (1,13824,5120) (1,5120,5120) (1,5120,13824) (1,13824,5120)

Sp
ee
du
p @RTX 3090 @Telsa A100

0.0
1.0
2.0
3.0
4.0
5.0

(1,4096,4096) (1,4096,11008) (1,11008,4096) (1,4096,4096) (1,4096,11008) (1,11008,4096) (1,4096,4096) (1,4096,11008) (1,11008,4096)

Sp
ee
du
p

PyTorch GPTQ Our

@RTX 2080 @RTX 3090 @Telsa A100

Figure 8: Kernel speedup. From the top to the bottom are
Llama2-7b, Llama2-13b, and ChatGLM3-6b. The tuple in the
x-axis represents the matrix shape of GEMV kernel.

Baselines. We compare our design with state-of-the-art quanti-
zation designs, including GPTQ [11] and Greenbit [12]. The original
PyTorch implementation on HuggingFace [1] is used as the baseline.

Hardware Platforms.We implement our design and compare
other baselines on NVIDIA RTX 2080, NVIDIA RTX 3090, and
NVIDIA A100 (80G) GPUs with CUDA version 12.2. The runtime
cost is evaluated considering the power consumption using the
NVML library [3], and the hardware cost is evaluated considering
the price ($12,500 for A100, $1499 for RTX 3090, and $699 for RTX
2080) with the 5-year service life period.

6.2 Accuracy Evaluations
Table 1 shows algorithm accuracy with zero-shot performance on
Llama2 family and ChatGLM3-6b. We set the group size to 16 for
Llama2-7b and Llama2-13b with 0.2% sparse outliers, and the group
size to 8 for Llama2-70b and ChatGLM3-6b.

0.0

0.2

0.4

0.6

RTX 3090 RTX 2080 RTX 3090(*2,*1)

Sp
ee
du
p

PyTorch PyTorch+Our PyTorch+FA PyTorch+FA+Our

Llama2-7b Llama2-13b

OOM OOM

1.50

1.25

1.00

0.00

Figure 9: Comparison with FlashAttention (FA) kernels.

Compared with the state-of-the-art GPTQ [11] method, our de-
sign significantly reduces the accuracy loss from 8.7% to 2.3% for
Llama2-7b, and from 6.4% to 2.8% Llama2-13b. Compared with
Greenbit [12] on Llama2-7b, we achieve 0.9% higher accuracy with
the same 2.91 average bit. On Llama2-70b and ChatGLM3-6b, the
accuracy loss is also controllable from 1.5% to 3.3%.

6.3 Performance Evaluations
We compare the inference cost (end-to-end speedup, runtime cost,
and hardware cost) among our method, PyTorch, and GPTQ in
various model families and model sizes in Table 2. All results are
normalized to PyTorch. In the Llama2 model family, our design
achieves 1.14× ∼ 1.74× end-to-end speedup and far outperforms
other previous works (e.g., GPTQ[11]) in terms of running cost re-
duction, reaching 2.19× ∼ 2.53× over the original model. Moreover,
the hardware requirement is dramatically lowered in our design for
all models in Table 2, bringing up to 2.70× runtime cost reduction
and 2.81× hardware cost reduction. The performance underscores
the effectiveness of our design’s optimizations and the practical
utility of our approach tailored to optimize the inference and de-
ployment of LLMs.

6.4 Detailed Discussions
6.4.1 Kernel Speedup. The detailed speedup of the GEMV ker-
nel with dequantization is shown in Figure 8. We compare our
kernel performance with some mainstream quantized kernels(e.g.,

Enabling Fast 2-bit LLM on GPUs: Memory Alignment, Sparse Outlier, and Asynchronous Dequantization DAC ’24, June 23–27, 2024, San Francisco, CA

GPTQ [11]) and the original FP16 models in common LLM GEMV
cases. Our kernel achieves 1.33× ∼ 3.92× over FP16 on various
NVIDIA GPUs.

6.4.2 Integrate with FlashAttention. FlashAttention [7] is widely
used to accelerate LLM inference. We show that our method is also
compatible with FlashAttention. Figure 9 shows that our method
achieves higher speedup compared with adopting FlashAttention.
Integrating our method with FlashAttention further accelerates
LLM inference by up to 1.31×, and solves the limited memory
problem on GPUs like NVIDIA RTX 2080.

7 CONCLUSIONS
We enable fast and low-cost LLM inference on GPUs in this paper
with three novel techniques. We quantize 25% weights 4-bit quanti-
zation and 0.2% sparse outliers with 16-bit based on insights into
weight distribution in LLMs. We further design the asynchronous
GPU kernel to accelerate LLM dequantization. For Llama2-7b, our
method achieves 2.85 average bits, and the end-to-end speedup is
1.74×. We reduce both runtime cost and hardware cost by up to
2.70× and 2.81× with less GPU requirements.

REFERENCES
[1] [n. d.]. https://huggingface.co/.
[2] [n. d.]. https://docs.nvidia.com/cuda/cusparse/.
[3] [n. d.]. NVIDIA Management Library (NVML) | NVIDIA Developer. https:

//developer.nvidia.com/nvidia-management-library-nvml.
[4] Yonatan Bisk, Rowan Zellers, et al. 2020. Piqa: Reasoning about physical com-

monsense in natural language. In AAAI.
[5] Christopher Clark, Kenton Lee, and Kristina Toutanova. 2019. BoolQ: Ex-

ploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044 (2019).

[6] Peter Clark, Isaac Cowhey, et al. 2018. Think you have solved question answering?
try arc, the ai2 reasoning challenge. arXiv preprint arXiv:1803.05457 (2018).

[7] Tri Dao, Dan Fu, et al. 2022. Flashattention: Fast and memory-efficient exact
attention with io-awareness. NeurIPS (2022).

[8] Tim Dettmers et al. 2023. SpQR: A Sparse-Quantized Representation for Near-
Lossless LLM Weight Compression. arXiv preprint arXiv:2306.03078 (2023).

[9] Mengnan Du et al. 2022. Shortcut learning of large language models in natural
language understanding: A survey. arXiv preprint arXiv:2208.11857 (2022).

[10] Elias Frantar and Dan Alistarh. 2023. SparseGPT: Massive Language Models Can
Be Accurately Pruned in One-Shot. (2023).

[11] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2022. Gptq:
Accurate post-training quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323 (2022).

[12] Nianhui Guo et al. 2023. Advanced Ultra-Low Bitrate Compression Techniques
for the LLaMA Family of LLMs. https://github.com/GreenBitAI/low_bit_llama
(2023).

[13] Ke Hong, Guohao Dai, et al. 2023. FlashDecoding++: Faster Large Language
Model Inference on GPUs.

[14] Sehoon Kim, Coleman Hooper, et al. 2023. SqueezeLLM: Dense-and-Sparse
Quantization. arXiv preprint arXiv:2306.07629 (2023).

[15] Ji Lin, Jiaming Tang, et al. 2023. AWQ: Activation-aware Weight Quantization
for LLM Compression and Acceleration. arXiv preprint arXiv:2306.00978 (2023).

[16] Zechun Liu, Barlas Oguz, et al. 2023. LLM-QAT: Data-Free Quantization Aware
Training for Large Language Models. arXiv preprint arXiv:2305.17888 (2023).

[17] Stephen Merity, Caiming Xiong, et al. 2016. Pointer sentinel mixture models.
arXiv preprint arXiv:1609.07843 (2016).

[18] Todor Mihaylov, Peter Clark, et al. 2018. Can a suit of armor conduct electricity?
a new dataset for open book question answering. arXiv preprint arXiv:1809.02789
(2018).

[19] Markus Nagel, Marios Fournarakis, et al. 2021. A white paper on neural network
quantization. arXiv preprint arXiv:2106.08295 (2021).

[20] Ansong Ni, Srini Iyer, et al. 2023. Lever: Learning to verify language-to-code
generation with execution. In International Conference on Machine Learning.

[21] Adam Paszke, Sam Gross, et al. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. InAdvances in Neural Information Processing
Systems 32. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf

[22] Dylan Patel and Afzal Ahmad. 2023. The Inference Cost Of Search Disruption
- Large Language Model Cost Analysis. https://www.semianalysis.com/p/the-
inference-cost-of-search-disruption.

[23] Baolin Peng, Chunyuan Li, et al. 2023. Instruction tuning with gpt-4. arXiv
preprint arXiv:2304.03277 (2023).

[24] Keisuke Sakaguchi, Ronan Le Bras, et al. 2021. Winogrande: An adversarial
winograd schema challenge at scale. Commun. ACM (2021).

[25] Hugo Touvron, LouisMartin, et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288 (2023).

[26] Guangxuan Xiao, Ji Lin, et al. 2023. Smoothquant: Accurate and efficient post-
training quantization for large language models. In ICML.

[27] Rowan Zellers, Ari Holtzman, et al. 2019. Hellaswag: Can a machine really finish
your sentence? arXiv preprint arXiv:1905.07830 (2019).

[28] Aohan Zeng, Xiao Liu, et al. 2022. Glm-130b: An open bilingual pre-trained
model. arXiv preprint arXiv:2210.02414 (2022).

https://huggingface.co/
https://docs.nvidia.com/cuda/cusparse/
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.semianalysis.com/p/the-inference-cost-of-search-disruption
https://www.semianalysis.com/p/the-inference-cost-of-search-disruption

	Abstract
	1 Introduction
	2 Preliminaries and Backgrounds
	2.1 Uniform Quantization
	2.2 Mixed-precision Quantization

	3 Range-aware Quantization with Memory Alignment
	4 Accuracy-aware Sparse Outlier
	5 Asynchronous Dequantization
	6 EXPERIMENTAL RESULTS
	6.1 Experimental Setup
	6.2 Accuracy Evaluations
	6.3 Performance Evaluations
	6.4 Detailed Discussions

	7 Conclusions
	References

