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ABSTRACT
Large language models (LLMs) have demonstrated impressive abili-
ties in various domains while the inference cost is expensive. Many
previous studies exploit quantization methods to reduce LLM infer-
ence cost by reducing latency and memory consumption. Applying
2-bit single-precision weight quantization brings >3% accuracy
loss, so the state-of-the-art methods use mixed-precision methods
for LLMs (e.g. Llama2-7b, etc.) to improve the accuracy. However,
challenges still exist: (1) Uneven distribution in weight ma-
trix. Weights are quantized by groups, while some groups contain
weights with large range. Previous methods apply inter-weight
mixed-precision quantization and neglect the range difference in-
side each weight matrix, resulting in >2.7% accuracy loss (e.g. LLM-
MQ and APTQ). (2) Large speed degradation by adding sparse
outliers. Reserving sparse outliers improves accuracy but slows
down the speed affected by the outlier ratio (e.g. 1.5% outliers re-
sulting in >30% speed degradation in SpQR). (3) Time-consuming
dequantization operations on GPUs.Mainstream methods re-
quire a dequantization operation to perform computation on the
quantized weights, and the 2-order dequantization operation is
applied because scales of groups are also quantized. These dequan-
tization operations lead to >50% execution time.

To tackle these challenges and enable fast and efficient LLM
inference on GPUs, we propose the following techniques in this
paper. (1) Intra-weight mixed-precision quantization.We only
quantize a small fraction of groups with higher sensitivity (larger
Hessian value and range variation) using 4-bit. Meanwhile, we also
take the memory alignment into consideration on GPUs. (2) Exclu-
sive 2-bit sparse outlier with minimum speed degradation.
We only reserve a small fraction of large weights in 2-bit groups as
sparse outliers using 16-bit, which leads to a lower average bit incre-
ment and speed degradation. (3) Asynchronous dequantization.
We point out that calculating the scales of each group in 2-order de-
quantization is independent of the loading weights of each group in
1-order dequantization. Thus, we design the asynchronous dequan-
tization on GPUs. We conduct extensive experiments on different
model families (e.g. Llama3, etc.) and model sizes. We achieve 2.91-
bit for each weight considering all scales/zeros for different models
with negligible loss. As a result, with our 2/4/16 mixed-precision
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Figure 1: Summary of this paper compared with state-of-
the-art quantization designs on mainstream large language
models. Detailed data can be found in Table II and Section 6.1.
quantization for each weight matrix and asynchronous dequantiza-
tion during inference, our design achieves an end-to-end speedup
for Llama2-7b is 1.74× over the original model, and we reduce both
runtime cost and total cost by up to 2.53× and 2.29× with less GPU
requirements.
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1 INTRODUCTION
Large language models (LLMs) demonstrate remarkable capabil-
ities in various domains, excelling in tasks like natural language
understanding and generation [7, 20, 22, 26, 29]. However, their com-
putational expense during inference is noteworthy. For instance,
OpenAI reveals that the GPT-4 Turbo incurs a cost of millions of
dollars each day [32]. This substantial cost underscores the eco-
nomic considerations associated with deploying and utilizing such
advanced language models [33]. Many previous studies exploit
quantization methods to reduce LLM inference cost by reducing
storage and accelerating computation [5, 10, 17, 19, 42]. Quantiza-
tion with the lower bit-width can further reduce the storage and
memory access overheads, leading to a more economic inference.
However, for 2-bit weight quantization, these methods including
Greenbit [13] still fail to prevent the accuracy loss (>3%). Com-
pared with single-precision methods, the state-of-the-art methods
use mixed-precision methods [12, 18] for LLMs to achieve better
accuracy exemplified by the Llama-2 family [38].
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Figure 2: Challenges in fast and efficient quantized LLM inference on GPU: (1) uneven distribution in weight matrix, (2)
large speed degradation by adding sparse outliers, and (3) time-consuming dequantization overheads. We propose three novel
contributions: (1) intra-matrixmixed-precision quantization, (2) exclusive 2-bit sparse outlier withminimum speed degradation,
and (3) asynchronous dequantization, to solve these challenges.

However, there still exist challenges of reducing LLM inference
cost with the mixed-precision weight quantization method. (1) Un-
even distribution in weight matrix.Weights are quantized by
groups, while some groups contain weights with large range. Pre-
vious works like GPTQ [10], AWQ [19], LLM-QAT [21] and Green-
bit [13] quantize weight matrix with single-precision and incur the
3.2% to 5.6% accuracy loss for Llama2-7b with 2-bit quantization.
And the recent works apply mixed-precision methods to improve
accuracy such as APTQ [12] and LLM-MQ [18]. They apply inter-
matrix mixed-precision quantization and neglect the difference
among the groups in each weight, still resulting in >2.7% accuracy
loss, as shown in Figure 2 left top. (2) Large speed degradation
by adding sparse outliers. Reserving sparse outliers improves
accuracy but introduces speed degradation affected by the outlier
ratio. Figure 2 middle top illustrates that the relationship between
the speed and accuracy with different sparse outlier ratios (0.5% and
1.5%). SpQR reserves 1.5% sparse outliers to improve the accuracy,
resulting in >30% speed degradation and hindering the inference
speedup [5] while reserving less brings limited accuracy improve-
ment. Consequently, it is necessary to improve accuracy and speed
simultaneously by adding a small fraction of sparse outliers in spe-
cific regions. (3) Time-consuming dequantization operations
on GPUs.Mainstream methods require a dequantization operation
to perform computation on 2-bit weights. Furthermore, a 2-order
dequantization operation is applied because the scales of groups
are also quantized. Figure 2 right top shows that, the dequantiza-
tion operation takes over 50% of the total execution time. These
challenges become the crucial factors impeding fast and efficient
LLM inference.

In response to these challenges, we enable fast and efficient LLM
inference on GPUs with the following contributions in this paper:

(1) Intra-matrixmixed-precision quantization.We point out
that the range of weights by groups varies and these groups always
exhibit high sensitivity (large Hessian value and range variation).
Because 4-bit quantization can prevent accuracy loss [10, 19], we
only quantize 25% of sensitive groups with large Hessian value and
range variation using 4-bit, and we also apply scale clipping and

zero padding techniques to achieve the memory alignment. Such a
method reduces the accuracy loss for 2-bit quantization from 4.6%
to 2.2% for Llama2-7b and from 8.6% to 2.5% for Llama-7b.

(2) Exclusive 2-bit sparse outlier with minimum speed
degradation.We point out that the speed degradation by reserving
sparse outliers consists of launching GPU kernel and calculation.
The time of launching kernel is fixed while the calculation time
is proportional with sparse outlier ratio. Thus, we only reserve a
small fraction (<0.5% with only launching kernel time) of large
weights in 2-bit groups as sparse outliers, which leads to a lower
average bit increment and higher speed. Such design improves the
accuracy by >0.5% with <0.15 increased average weight bit and
only 20% speed degradation.

(3) Asynchronous dequantization.We point out that calcu-
lating the scales of each group in 2-order dequantization is inde-
pendent of the loading group weights in 1-order dequantization.
Thus, we design the asynchronous dequantization and accelerate
the GPU kernel by up to 3.92×.

We conduct extensive experiments on different model families
(e.g., Llama1 [25], Llama2 [38], Llama3 [24], ChatGLM3 [45] and
BERT [6]) and model sizes (i.e., Llama2-7b to Llama2-70b). We
achieve 2.91-bit for each weight considering all scales/zeros with
25% 4-bit for different models with negligible accuracy loss (e.g.
2.2%/1.1% for Llama2-7b/13b, respectively). The end-to-end speedup
for Llama2-7b is 1.74×, and we reduce both runtime cost and total
cost by up to 2.53× and 2.29× with less GPU requirements.

2 BACKGROUND
2.1 Transformer
The transformer model [39] is a typical backbone architecture pri-
marily used for LLM tasks such as language translation, text summa-
rization, and question answering [2, 16, 28]. The transformer model
consists of several transformer blocks, and each block contains two
components, self-attention and feed-forward network.

Self-attention: The self-attention mechanism in the Trans-
former model involves four computations. First, the input embed-
ding 𝑋 is multiplied by four weights matrix𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 to get
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Figure 3: Overview of each transformer block. The self-
attention contains four linear projections and feed-forward
network contains at least two linear projections.

Query, Key, and Value vectors (𝑄 , 𝐾 , and𝑉 ) separately. Second, the
attention scores are computed by taking the dot product of 𝑄 with
𝐾 and scaled down by

√︁
𝑑𝑘 , the square root of the dimension of

𝐾 . Then, the scaled attention scores are normalized by a softmax
function to obtain a relative attention scores, which allows the
model to focus on relevant parts of the input sequence. And the
softmax-normalized attention scores are multiplied by 𝑉 to obtain
the weighted output 𝑂0. In addition, 𝑂0 is multiplied by𝑊𝑂 to
obtain the final output 𝑂1 of self-attention.

𝑂0 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇√︁
𝑑𝑘

)𝑉 (1)

Feed-forward Network: After the self-attention, the output
𝑂1 is passed through a feed-forward network within each layer.
This network applies two or three linear transformations to𝑂1 and
obtain the final output 𝑂2.

2.2 Quantization
A group of floating weights with range of (𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥 ) are quan-
tized to integers (𝑤𝑖𝑛𝑡 ) with the range of (0, 2𝑁 −1), a zero-point (𝑧)
and a scaling factor (𝑠) [27]. Scaling factor is half and zero-point is
an 𝑁 bits integer. The quantization and dequantization operations
are:

𝑠 =
𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛

2𝑁 − 1
(2)

𝑧 = 𝑟𝑜𝑢𝑛𝑑 ( −𝑤𝑚𝑖𝑛
𝑠
) (3)

𝑤𝑖𝑛𝑡 = 𝑐𝑙𝑎𝑚𝑝 (0, 2𝑁 − 1, 𝑟𝑜𝑢𝑛𝑑 (
𝑤

𝑠
) + 𝑧) (4)

𝑤 𝑓 𝑙𝑜𝑎𝑡 = (𝑤𝑖𝑛𝑡 − 𝑧) × 𝑠 (5)
Weights along the direction of input dimensions are quantized

by group, while the scaling factors of groups along the direction
of the output dimensions are also quantized to further reduce the
average bit. Here, the average bit, denoted as 𝑏𝑖𝑡 with 1-order and
2-order quantization is as follows:

𝑏𝑖𝑡 =


𝑁 + 𝑁 + 16

𝑔1
, 1-order (6)

𝑁 + 𝑁 + 𝑁𝑠
𝑔1

+ 𝑁𝑠 + 16
𝑔1 × 𝑔2

, 2-order (7)

where 𝑔𝑖 represents the size of group and 𝑁𝑠 represents the bit
width of the quantized scaling factors with 2-order.

2.3 Sparse Outlier
In LLMs, weights exhibit large magnitudes compared to the oth-
ers. By applying the normal uniform quantization, the quantiza-
tion range is expanded by these outliers and thus, the majority of
weights are quantized with only a few representations, leading to
large quantization error. Mixed-precision quantization methods
like SpQR, SqueezeLLM and LLM-MQ filter and retain outliers that
negatively impact quantization error and store outliers with 16-
bit sparse matrix [5, 17, 18]. These methods quantize the weights
matrix into a dense matrix and a 16-bit sparse matrix. And the
Compressed Sparse Row (CSR) is used to represent sparse matrices,
optimizing memory usage.

In CSR, three arrays encapsulate the matrix data. The values
array (values) efficiently arranges non-zero elements in row-major
order, while the column indices (col_ind) arraymeticulously records
the corresponding column index for each non-zero element. The
row pointer (row_ptr) array serves as a guide, storing the starting
index for each row in the values array. Outlier retention of weights
is common for low-bit quantization in LLMs. Each outlier is stored
using one 32-bit combination: a 16-bit weight value and a corre-
sponding 16-bit column index. Additionally, for every row, a 32-bit
number is allocated to store the total count of outliers up to that
row. This results in an overall 32-bit storage overheads for each
weight outlier.

3 INTRA-WEIGHT MIXED-PRECISION
QUANTIZATION

The quantization method is widely used to reduce LLM inference
cost [5, 10, 19] by reducing storage and accelerating computation.
It uses discrete values to represent continuous weights, leading to
quantization errors. For 2-bit quantization, weights are quantized
by groups, while some groups contain weights with large range.

3.1 Challenge
Previous works [10, 13, 19, 21] only quantize weight matrix with
2-bit single-precision and incur the 3.2% to 5.6% accuracy loss for
Llama2-7b. The state-of-the-art methods use inter-weight mixed-
precision methods [12, 18] for LLMs to improve the accuracy with
<3 average bit considering all scaling factors and zero-points. How-
ever, these methods neglect the range variance of quantization
groups (uneven distribution) inside each weight matrix, which
leads to >2.7% accuracy loss for Llama2-7b. Thus, the key challenge
is that even the state-of-the-art mixed-precision methods suffer
from handling the uneven distribution inside weight matrices.

Weight Matrix
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Figure 4: The range of weight matrix by groups: the blue
groups have larger range while the green groups are smaller.
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cation of the original weight matrix𝑊 with different range distribution and Hessian matrix 𝐻 , and then apply intra-weight
2/4-bit mixed-precision quantization. Last, we propose three techniques for memory alignment.
3.2 Motivation and Insight
Some previous methods like SpQR [5], SparseGPT [9] and AWQ [19]
have analyzed that the quantization errors are large in specific
groups. So we depict the range of weights by groups, as shown
in Figure 4. The range of weights exhibits different distributions
for different groups, and only a small fraction of groups show a
large range while the others show a small range. Applying 4-bit
quantization to these groups with a large range can reduce the
quantization error. Thus, our key insight is, the range by groups
varies inside weight matrix and some groups require 4-bit
quantization to reduce large quantization error.

3.3 Approach
Intra-weight Quantization. In Figure 5, we depict the quanti-
zation flow of weights. Notably, weights are quantized by group
to reduce accuracy loss while the groups with a large range still
require larger bit-width to improve accuracy. To determine which
values are more sensitive to affect the loss caused by quantization,
we perform Taylor series [8] expansion to analyze how the model
output changes in response to perturbations in the parameters𝑊 :

𝐿(𝑊𝑄 ) ≈ 𝐿(𝑊 ) − 𝑔𝑇 (𝑊 −𝑊𝑄 ) +
1
2 (𝑊 −𝑊𝑄 )

𝑇𝐻 (𝑊 −𝑊𝑄 )

≈ 𝐿(𝑊 ) + 1
2 (𝑊 −𝑊𝑄 )

𝑇𝐻 (𝑊 −𝑊𝑄 )
(8)

where 𝑔 is the gradient and 𝐻 is the second derivative (i.e., Hessian
matrix) of the loss at𝑊 . Assuming that the model has converged
to a local minimum, the gradient 𝑔 can be approximated as zero,
which is mentioned in previous works [10, 14, 17]. The quantization
error𝑊 −𝑊𝑄 is weighted by the second-order derivative 𝐻 . This
highlights the importance of minimizing perturbations for weights
that have large Hessian values, as they have a greater impact on
the overall perturbation of the final output. In other words, the
second-order derivative serves as a measure of importance for each
weight value. To reduce the accuracy loss, we should consider
both the range variation and the second derivative variation
by groups.

Therefore, we first analyze the range variation by group. The
range of groups in the same input channels is merged to stream-
line the complexity of hardware computation. Concretely, weights
are divided by the Hessian inverse matrix to get the sensitivity

of weights, leveraging the Hessian inverse matrix’s ability to dis-
cern weight importance. Subsequently, the calibrated weights are
squared to magnify the sensitivity variance. The sensitivity of each
input channel is computed as follows:

𝑆𝑖 =

𝑀∑︁
𝑚=1

𝑂𝐶∑︁
𝑗=1

𝑤2
𝑀𝑖+𝑚,𝑗

[𝐻−1]2
𝑀𝑖+𝑚

(9)

where 𝐻−1 represents the Hessian inverse matrix of each weight
matrix,𝑀 represents the groupsize,𝑂𝐶 represents the dimension of
output channels, and𝑤𝑀𝑖+𝑚,𝑗 represents the original value of each
element in the group𝑚. The Hessian inverse matrix 𝐻−1 can be
calculated offline [10] to reduce the quantization overheads. And 𝑆𝑖
represents the sensitivity of group 𝑖 , which the serves as a criterion
and a indicator to determine which group should be quantized with
higher bitwidth.

Thus, the variance of weights by groups is equivalent to the
sensitivity variance. Then, we analyze the variance and obtain the
information for 𝑆𝑖 that the groups with large sensitivity require
4-bit quantization and others require 2-bit quantization. According
to the analysis results, we apply the finetuning approach [21, 36]
like quantization aware training (QAT) to further reduce the quan-
tization error. In the forward process of QAT, the weights with
a large range are quantized and then dequantized with 4-bit by
group while others are with 2-bit. After finetuning, we use the
same analysis results to quantize different grouped input channels
with different bit-width. For small range input channels, we first
do 2-bit 1-order quantization for the weights𝑊𝑓 𝑙𝑜𝑎𝑡 by group 𝑔1 in
the direction of input channels to get the quantized weight𝑊𝐼𝑁𝑇 ,
1-order zeros 1𝑠𝑡𝑧 and scales 𝑠 . To further reduce the average bit,
the scales 𝑠 are also quantized with 4-bit by group𝑔2 in the direction
of output channels (2-order quantization) to get 1-order quantized
scales 1𝑠𝑡𝑠 , 2-order zeros 2𝑛𝑑𝑧 and scales 2𝑛𝑑𝑠 . During 2-bit quanti-
zation, outliers are also detected and reserved to reduce accuracy
loss. Then, the weights in large range input channels are quantized
with 4-bit. Therefore, the average bit-width of each weight element
considering all scaling factors and zero-points is:

𝑏𝑖𝑡 = 𝛼 × (2 + 2 + 𝑁𝑠
𝑔1

+ 𝑁𝑠 + 16
𝑔1𝑔2

) + (1 − 𝛼) × 4 (10)

where 𝛼 is the ratio of 2-bit and other parameters are as the same
definition in equation (6) and (7).
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Linear Increasing RegionKernel Launch Region

Figure 6: The GPU kernel speed degradation ratio of
SpMV+GEMV with dequantization compared to GEMV with
dequantization with different shape on different GPUs. Ker-
nel launch region is irrelevant with sparse outlier ratio. Lin-
ear increasing region is increased linearly with the ratio.

Memory Alignment. As illustrated in Figure 5 right, the quan-
tized weights are split into two quantized weight matrixes. The
first matrix stores 3 groups of 2-bit quantized weights (the size of
group is 16) and 8 4-bit quantized weights into continuous memory.
The other matrix stores 8 remaining 4-bit quantized weights into
independent memory. Thus, the memory access for each thread in
GPU is memory-aligned. Then, to maximize memory utilization
without compromising accuracy, a nuanced approach is taken with
scale factors and zero values. 1-order zeros 1𝑠𝑡𝑧 and scales 1𝑠𝑡𝑠 are
coherently packed together and two of the three scales are com-
pressed into 3-bit representations to occupy a 16-bit memory space
efficiently (Scale Clipping). In contrast, 2-order zeros are stored
with paddings (Zero Padding) to maintain alignment with memory
boundaries. These meticulous memory alignment techniques ef-
fectively preserve accuracy loss while incurring a negligible <0.02
average bit overhead.

4 EXCLUSIVE 2-BIT SPARSE OUTLIER
The intra-weight mixed-precision quantization method can effi-
ciently reduce quantization errors of groups with large variations.
However, there are still some outliers sparsely distributed in the
weight matrices. Reserving these sparse outliers can further im-
prove accuracy but it also introduces speed degradation affected by
the sparse outlier ratio.

4.1 Challenge
Reserving these sparse outliers can further improve accuracy but
it also introduces speed degradation affected by the outlier ratio.
In order to reduce the quantization error caused by these random
outliers, the straightforward approach is to reserve a large amount
of outliers from all groups in weight matrix, which introduces speed
degradation and large average bit increment. Previous works re-
serve 1.5% sparse outliers to improve the accuracy, and apply a

sparse matrix-vector multiplication (SpMV) to compute these out-
liers. Due to the differences in computational processes between the
SpMV and the general matrix-vector multiplication (GEMV) with
dequantization, these two parts need to be calculated separately and
then combined at then end, resulting in >30% speed degradation
and hindering the inference speedup [5]. And reserving less out-
liers maintains the speed but brings limited accuracy improvement.
Thus, the key challenge is to maximize the accuracy improvement
and maintain speed simultaneously by reserving sparse outliers.

4.2 Motivation and Insight
We depict the GPU kernel speed degradation ratio caused by sparse
outliers in Figure 6. In kernel launch region, the speed degradation
ratio is fixed while in linear increasing region it is increased lin-
early with sparse outlier ratio. Besides straightforwardly reserving
a large ratio of outliers from all groups in the weight matrix, an-
other way is to reserve a small ratio of outliers from some specific
groups. Previous designs like SpQR [5] and SqueezeLLM [17] apply
the corresponding sparse format (e.g., CSR) to store and compute
the sparse outliers. Each sparse outlier requires at least one 16-
bit for the weight representation and one 16-bit for the position.
Therefore, besides the speed degradation, introducing 1.5% 16-bit
sparse outliers leads to (16 + 16− 2) × 1.5% = 0.45 extra average bit.
Thus, our key insight is, reserving a small fraction (e.g., ≤0.5%)
of sparse outliers from 2-bit groups can maintain inference
speed and the algorithm accuracy simultaneously.

4.3 Approach
The detailed method of the exclusive 2-bit sparse outlier is illus-
trated in Figure 7. The green regions represent weights quantized
to 2-bit precision, while the blue regions represent weights quan-
tized to 4-bit precision. The red squares represent sparse outliers.
The original ratio of outliers is 1.5% and they are reserved from all
groups including 2-bit groups and 4-bit groups. First, we constrain
the ratio of sparse outliers to 0.5%, which decreases the speed degra-
dation ratio from >30% to the minimum (about 20%, for GEMVwith
the size of (4096,4096) on NVIDIA RTX 3090). Then, we constrain
the reservation regions from all groups to only 2-bit groups. Thus,
with the minimum inference overheads, our method reserves more
outliers in 2-bit groups. In practice, we only reserve 0.2-0.5% out-
liers and increase 0.06-0.15 average bit. We utilize the CSR format
used in previous designs [5, 17] for sparse outliers representation,
and apply GPU kernels in the NVIDIA cuSPARSE library [30] to
perform matrix-vector multiplication on these outliers.

Only in 2-bit Groups (0.5%)

Accuracy ↑
×

×

×

In all Groups (1.5%) In all Groups (0.5%)

Ratio ↓
Speed ↑

Figure 7: Exclusive 2-bit sparse outlier reservation method.
The green regions represent 2-bit groups while the blue
regions represent 4-bit groups. The red squares represent
sparse outliers.We constrain the ratio of sparse outliers from
1.5% to 0.5% and from all groups to only 2-bit groups.
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Algorithm 1 GEMV with Asynchronous Dequantization GPU Ker-
nel Algorithm
Input: Quantized weights𝑊𝑖𝑛𝑡 , 1-order zero_points 1𝑠𝑡𝑍 , 1-order scal-

ing_factors 1𝑠𝑡𝑆𝑖𝑛𝑡 , 2-order zero_points 2𝑛𝑑𝑍 , 2-order scaling_factors
2𝑛𝑑𝑆 , input 𝑋 , input channel 𝐼𝐶 .

1: /*Hyperparameters for 2-bit dequantization*/
2: 𝑁𝑤𝑜𝑟𝑘𝑒𝑟 = 2048, 𝑁𝑝𝑎𝑐𝑘 = 16
3: 𝐿𝑜 = 𝐶𝑒𝑖𝑙 (𝐼𝐶/𝑁𝑤𝑜𝑟𝑘𝑒𝑟 )
4: 𝐿𝑖 = 4 /*Equal with vector load double4*/
5: for _ from 1 to 𝐿𝑜 do
6: /*load 1𝑠𝑡𝑆𝑖𝑛𝑡 , 2𝑛𝑑𝑍 , 2𝑛𝑑𝑆 , 𝑋 to Shared Memory*/
7: 𝑠𝑚_𝑠_1𝑠𝑡 ← 1𝑠𝑡𝑆𝑖𝑛𝑡 , 𝑠𝑚_𝑥 ← 𝑋

8: 𝑠𝑚_𝑧_2𝑛𝑑 ← 2𝑛𝑑𝑍 , 𝑠𝑚_𝑠_2𝑛𝑑 ← 2𝑛𝑑𝑆
9: __𝑠𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ( )
10: for _ from 1 to 𝐿𝑖 do
11: /*load𝑊𝑖𝑛𝑡 , 1𝑠𝑡𝑍 to Shared Memory*/
12: 𝑠𝑚_𝑤_𝑖𝑛𝑡 ←𝑊𝑖𝑛𝑡 , 𝑠𝑚_𝑧_1𝑠𝑡 ← 1𝑠𝑡𝑍
13: /*load to registers*/
14: 1𝑠𝑡𝑠𝑖𝑛𝑡 ← 𝑠𝑚_𝑠_1𝑠𝑡 , 2𝑛𝑑𝑧 ← 𝑠𝑚_𝑧_2𝑛𝑑 , 2𝑛𝑑𝑠 ← 𝑠𝑚_𝑠_2𝑛𝑑
15: 1𝑠𝑡𝑠 ← 𝑑𝑒𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒 (1𝑠𝑡𝑠𝑖𝑛𝑡 , 2𝑛𝑑𝑧, 2𝑛𝑑𝑠 )
16: __𝑠𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ( )
17: for _ from 1 to 𝑁𝑝𝑎𝑐𝑘 do
18: /*load input to register*/
19: 𝑤𝑖𝑛𝑡 ← 𝑠𝑚_𝑤_𝑖𝑛𝑡 , 1𝑠𝑡𝑧 ← 𝑠𝑚_𝑧_1𝑠𝑡 , 𝑥 ← 𝑠𝑚_𝑥
20: 𝑤𝑓 𝑙𝑜𝑎𝑡 ← 𝑑𝑒𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒 (𝑤𝑖𝑛𝑡 , 1𝑠𝑡𝑧, 1𝑠𝑡𝑠 )
21: 𝑝𝑠𝑢𝑚 ← 𝑝𝑠𝑢𝑚 + 𝑤𝑓 𝑙𝑜𝑎𝑡 × 𝑥
22: end for
23: end for
24: end for
25: 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑟𝑒𝑑𝑢𝑐𝑒 (𝑂, 𝑝𝑠𝑢𝑚)
Output: Output vector𝑂 .

5 ASYNCHRONOUS DEQUANTIZATION
5.1 Challenge
Because the weights are quantized by 2/4-bit intra-weight mixed-
precision, it requires the dequantization operation to restore the
weights to half data type (16-bit) before performing the multiplica-
tion between the input and weights. We apply 1-order and 2-order
quantization to quantize the weights of each group and the scales
of adjacent groups, respectively. Previous designs (e.g., SpQR[5],
Greenbit[13]) use the synchronous dataflow (i.e., performing de-
quantization after loading all weights), resulting in >50% overheads
of end-to-end execution time. Thus, the key challenge is the time-
consuming synchronous dequantization operation becomes the
bottleneck in accelerating LLM inference after quantization.

5.2 Motivation and Insight
The 1-order and 2-order quantization requires two synchronous de-
quantizations in dataflow. However, the 2-order dequantization for
calculating the scales of each group is independent of the weights
of each group for the 1-order dequantization. Moreover, the 1-order
dequantization for restoring the weights to 16-bit is independent
of the input data of multiplication. Thus, our key insight is calcu-
lating the scales of each group in 2-order dequantization can
be overlapped with loading weights of each group in 1-order
dequantization in GPU kernel.

1

2

2ndZ 2ndS 1stSint

Shared Memory (SMem)

Registers (Reg)

1sts

2-order Calculate Scales

2

1stZ Wint

SMem

Reg

Wfloat

3

3

X

SMem

Reg
4

Matrix-Vector Multiplication

1-order Calculate
Weight

Asynchronous
Dequantization

Vector
Load

Wi: i-th Warp in Block
Ti  : i-th Thread in Warp

W0

T31

T0

T1

…

O0 O1

Block 0

…

O4 O5

Block 1

W1 W0 …W1

…

… … …Output

Input

Weight

GPU Kernel

T31

T0

T1

…

Share

1-order Load
Weights

Figure 8: Asynchronous dequantization on GPUs.
5.3 Approach
Based on the insights above, we design the asynchronous dequanti-
zation dataflow as illustrated in Figure 8 on GPUs. With the help of
the shared memory, we can overlap the calculating scales of each
group and the loading weights of each group. Further, we use CUDA
primitive __shfl_down_sync() to reduce the partial result inside
a warp in parallel. From the perspective of memory access, we ap-
ply vector load (e.g. double4) technique to load quantized weights,
input, scales and zeros to minimize the numbers of memory access.
Algorithm 1 shows the four main parts including outer loop, inner
loop, packed loop and parallel reduction. The outer loop (Line 5-24)
loads the 2-order zero-points 2𝑛𝑑𝑍 , quantized 1-order scaling fac-
tors 1𝑠𝑡𝑆𝑖𝑛𝑡 and 2-order scaling factors 2𝑛𝑑𝑆 from global memory
to shared memory. Then, it prepares for the 2-order dequantization,
corresponding to ➀ in Figure 8. The inner loop (Line 10-23) loads
the quantized weight𝑊𝑖𝑛𝑡 and the 1-order zero-points 1𝑠𝑡𝑍 from
global memory to shared memory. Simultaneously, it also performs
2-order dequantization for scaling factors 1𝑠𝑡𝑠 , corresponding to
➁. The packed loop (Line 17-22) uses the dequantized scaling fac-
tors 1𝑠𝑡𝑠 , 1-order zeros-point 2𝑛𝑑𝑍 and quantized weights𝑊𝑖𝑛𝑡 to
perform 1-order dequantization, and then loads input vector 𝑋 for
multiplication, corresponding to operation ➂ and ➃. Last, parallel
reduction is performed to add partial results from all threads.

6 EXPERIMENTAL RESULT
6.1 Experimental Setup
Benchmarks. We conduct comprehensive experiments on the
Llama1 [25], Llama2 [38], Llama3 [24] model families and the
ChatGLM3-6b model [45], which are owing to critical and efficient
influence in recent model advancements. We focus on two primary
metrics: perplexity and zero-shot performance. The perplexity (PPL)
is evaluated by the WikiText-2 [23] benchmark. The zero-shot per-
formance is assessed across four zero-shot benchmarks, namely
Piqa [1], HellaSwag [44], WinoGrande [34], and Arc-e [3]. We also
conduct experiments on the BERT-base [6] model on two datasets
(MNLI and STS-B) of the GLUE benchmark [40].

Baselines.We compare our method with state-of-the-art single-
precision and mixed-precision quantization methods, including
AWQ [19], GPTQ [10], OmniQuant [36], APTQ [12], LLM-MQ [18]
and Greenbit [13]. For kernel and end-to-end performance, the
original PyTorch implementation on HuggingFace [15] is also used
as the baseline.

Hardware Platforms.We implement our design and compare
with other baselines on NVIDIA RTX 2080, NVIDIA RTX 3090, and
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Table 1: LLM Algorithm Perplexity and Zero-shot Accuracy

Method 𝑏𝑖𝑡 PPL(↓) Piqa/Hella./Wino./Arc-e Avg.(↑)

Llama1-7b 16 5.68 79.2/76.2/69.9/72.8 75.1
APTQ[12] 3.13 6.76 74.5/68.3/65.3/57.9 66.5
Our 2.84 6.61 76.6/72.8/68.5/70.4 72.1
Our (0.2%) 2.91 6.56 76.8/73.8/68.7/71.0 72.6

Llama1-13b 16 5.09 80.3/79.0/72.7/74.8 76.7
APTQ[12] 3.13 / 74.4/71.2/68.0/64.1 69.4
Our 2.84 5.92 79.2/76.9/71.6/72.7 75.1
Our (0.2%) 2.91 5.89 79.3/77.8/71.9/73.0 75.5

Llama2-7b 16 5.47 78.5/56.7/67.2/69.3 67.9
GPTQ[10] 3 8.37 71.7/48.2/61.2/56.1 59.3
OmniQuant[36] 3 6.65 74.1/51.9/63.5/63.8 63.3
LLM-MQ[18] 2.91 / 76.5/53.2/65.0/65.8 65.1
Greenbit[13] 2.91 6.09 77.2/53.8/65.8/62.5 64.8
Our 2.84 6.62 75.9/51.3/66.4/66.9 65.1
Our (0.2%) 2.91 6.59 76.1/52.0/66.8/67.2 65.7

Llama2-13b 16 4.88 78.3/59.7/69.6/73.3 70.2
GPTQ[10] 3 6.44 75.2/56.1/64.3/64.2 64.0
OmniQuant[36] 3 5.59 77.2/56.8/66.5/66.7 66.8
LLM-MQ[18] 2.91 / 77.6/56.9/68.0/72.6 68.8
Our 2.84 5.48 77.2/57.6/68.5/71.2 68.7
Our (0.2%) 2.91 5.37 77.8/58.8/68.6/71.3 69.1

Llama3-8b 16 6.10 79.9/60.2/72.8/80.1 73.3
GPTQ[10] 3 13.03 60.8/41.8/60.9/38.8 50.6
Our 2.84 8.54 75.3/54.9/70.3/69.4 67.5
Our (0.2%) 2.91 8.46 76.8/55.4/70.5/70.3 68.3

ChatGLM3-6b 16 / 70.8/49.4/61.3/51.1 58.2
Our 2.91 / 66.7/44.7/59.4/48.5 54.8

NVIDIA A100 (80G) GPUs with CUDA version 12.2. As mentioned
in Figure 1 and Table 3, the runtime cost is evaluated considering the
power consumption using the NVML library [31], and the hardware
buying cost is evaluated considering the price ($12,500 for A100,
$1499 for RTX 3090, and $699 for RTX 2080). With the 5-year service
life period, the buying cost for each GPU is: $0.285/h for A100,
$0.034/h for RTX 3090, and $0.016/h for RTX 2080. We assume the
electricity cost is 0.09$/kWh [11], and the total cost for each GPU
can be calculated by:
𝑏𝑢𝑦𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 𝑝𝑟𝑖𝑐𝑒 ÷ 5 𝑦𝑒𝑎𝑟𝑠
𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑐𝑜𝑠𝑡 = 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑠𝑡 ×𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑝𝑜𝑤𝑒𝑟

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝑏𝑢𝑦𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 + 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑐𝑜𝑠𝑡
(11)

6.2 Perplexity and Accuracy Evaluation
Table 1 shows algorithm perplexity and accuracy with zero-shot
performance on Llama1, Llama2, Llama3 families and ChatGLM3-6b.
We set the 1-order group size to 16 and 2-order group size to 16 for
Llama1-7b/13b/70b, Llama2-7b/13b and Llama3-8b with 0.2% sparse
outliers, and the 1-order group size to 8 and 2-order group size
to 16 for and ChatGLM3-6b. For Llama1 family, we only compare
with APTQ because its code is not open-source and it only provides
the results for these LLMs. And with the emergent abilities [41] of
LLMs, we can achieve lower accuracy loss for Llama2-70b model.
Table 2 shows the algorithm accuracy on BERT-base.

Llama1. Compared with APTQ [12], we achieve 5.6% and 5.7%
higher accuracy with lower 2.84 average bit on 7b and 13b models,

Table 2: BERT Algorithm Accuracy and Compression Ratio

Method 𝑏𝑖𝑡 CR MNLI STS-B Avg.(↑)

BERT𝑏𝑎𝑠𝑒 32 1× 84.9 89.7 87.3
GOBO[43] 3.26 9.8× 83.8 88.3 86.1
Q-BERT[37] 3.52 9.1× 81.8 / /
Our 2.85 11.2× 84.2 88.7 86.5

respectively. By reserving 0.2% sparse outliers, we achieve 5.56%
and 5.7% higher accuracy with lower 2.91 average bit, respectively.

Llama2. Compared with GPTQ [10], our design significantly
reduces the accuracy loss from 8.7% to 2.2% for Llama2-7b, and from
6.4% to 1.1% Llama2-13b with lower average bit. Compared with
OmniQuant [36], our design significantly reduces the accuracy loss
from 4.6% to 2.2% for Llama2-7b, and from 3.4% to 1.1% Llama2-13b.
Compared with LLM-MQ [18], we achieve 0.6% and 0.3% higher ac-
curacy for Llama2-7b and Llama2-13b, respectively. Compared with
Greenbit [13] on Llama2-7b, we achieve 0.9% higher accuracy with
the same 2.91 average bit. And due to the emergent abilities [35],
Llama2-70b can prevent more accuracy loss than Llama2-13b.

Llama3. On Llama3-8b, compared with GPTQ, our design re-
duces the accuracy loss from 22.7% to 5.0% with lower average
bit.

ChatGLM3. On ChatGLM3-6b, the accuracy loss 3.4% is also
controllable and it can be lower if the bilingual dataset is used for
calibration.

BERT. On BERT-base model, compared with GOBO [43] and Q-
BERT [37] methods, we achieve 2.4% and 0.4% higher accuracy with
lower 2.85 average bit. Compared with the original full precision
model, the accuracy loss is only 0.8%.

6.3 Kernel Evaluation
The detailed speedup of the GEMV kernel with dequantization is
shown in Figure 9. We compare our kernel performance with some
mainstream quantized kernels (e.g., GPTQ [10]) and the original
FP16 models in common LLM GEMV cases. Because the large accu-
racy loss of AWQ method with 3-bit quantization, we exclude the
comparison with its kernel. Without computating sparse outliers,
our kernel achieves 1.33× ∼ 3.92× over FP16 on various NVIDIA
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Table 3: Comparison of end-to-end speedup, runtime cost, and total cost

Model Method GPU Power (W) Token/s End-to-end speedup Runtime cost reduction Total cost reduction

Llama2-7b

PyTorch 3090×1 290/350 25.9 1× 1× 1×
GPTQ 3090×1 320/350 37.5 1.45× 1.31× 1.12×
Our 3090×1 350/350 45.2 1.74× 1.44× 1.16×
Our 2080×1 150/215 34.0 1.31x 2.53× 2.29×

Llama2-13b
PyTorch 3090×2 240/350 22.0 1× 1× 1×
GPTQ 3090×1 270/350 23.1 1.06× 1.89× 1.95×
Our 3090×1 250/350 25.0 1.14× 2.19× 2.07×

PyTorch A100×2 400/400 38.5 1× 1× 1×
Llama2-70b GPTQ A100×1 400/400 46.5 1.21× 2.42× 2.04×

Our A100×1 400/400 50.5 1.31× 2.62× 2.06×

Llama3-8b
PyTorch 3090×1 290/350 26.5 1× 1× 1×
Our 3090×1 350/350 48.2 1.82× 1.51× 1.22×
Our 2080×1 150/215 34.0 1.30× 2.61× 2.36×

PyTorch 3090×1 350/350 32.5 1× 1× 1×
ChatGLM3-6b Our 3090×1 350/350 40.0 1.23× 1.23× 1.09×

Our 2080×1 170/215 45.5 1.40× 2.88× 2.44×

GPUs. With 0.2% sparse outliers, our kernel achieves 1.16× ∼ 3.23×
over FP16 on various NVIDIA GPUs.

6.4 Performance Evaluation
We compare the inference cost (end-to-end speedup, runtime cost
reduction, and total cost reduction) including 0.2% sparse outliers
among our method, PyTorch, and GPTQ in various model families
and model sizes in Table 3. All results are normalized to PyTorch.
In the Llama2 model family, our design achieves 1.14× ∼ 1.74×
end-to-end speedup and far outperforms other previous works (e.g.,
GPTQ [10]) in terms of running cost reduction, reaching 2.19× ∼
2.53× over the original model. The performance of Llama1 models
is the same as Llama2 because they have the same model parameter.
Moreover, the hardware requirement is dramatically lowered in
our design for all models in Table 3, bringing up to 2.88× runtime
cost reduction and 2.44× total cost reduction. The performance
underscores the effectiveness of our design’s optimizations and the
practical utility of our approach tailored to optimize the inference
and deployment of LLMs.

We also show that our method is also compatible with FlashAt-
tention [4], the most widely used LLM inference engine. Figure 10
shows that our method achieves higher speedup compared with
adopting FlashAttention. Integrating our method with FlashAtten-
tion further accelerates LLM inference by up to 1.31×, and even
enables LLM inference on GPUs with limited memory (e.g., NVIDIA
RTX 2080).
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Figure 10: FlashAttention (FA) [4] integration and compari-
son.

6.5 Ablation Study
We also present an ablation study to validate the superiority of
our method over manual inter-layer quantization schemes. The
most intuitive mixed-precision quantization strategy is to uniformly
quantize all layers within each block with single-precision. The
results in Table 4 reveal our method’s efficacy over manual inter-
layer quantization for Llama2-7B on WikiText-2, reflected in its
consistently lower perplexity across various quantization ratios.

Table 4: Ablation study: Perplexity comparison on Llama2-7b

Method 𝑏𝑖𝑡 Ratio of 4-bit Perplexity (↓)

Manual inter-layer 2.85 25% 7.13
Our 2.85 25% 6.62
Manual inter-layer 2.60 10% 9.32
Our 2.60 10% 7.13

7 CONCLUSIONS
We enable fast and efficient 2-bit LLM inference on GPUs in this
paper with three novel techniques. We apply intra-weight mixed-
precision quantization for weight matrices with 2-bit and 4-bit
groups. We also introduce exclusive 16-bit sparse outliers in the
2-bit group with the minimum GPU kernel launching overhead.
We further design the asynchronous GPU kernel to accelerate LLM
dequantization. As a result, with our 2/4/16 mixed-precision quan-
tization for each weight matrix and asynchronous dequantization
during inference, our design achieves an end-to-end speedup for
Llama2-7b is 1.74× over the original model, and we reduce both
runtime cost and total cost by up to 2.53× and 2.29× with less GPU
requirements.
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