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Abstract—Processing-in-memory (PIM) architectures have
shown great abilities for neural network (NN) acceleration on
edge devices that demand low latency under severe area con-
straints. Heterogeneous PIM architectures with different PIM im-
plementation approaches such as RRAM-based PIM and SRAM-
based PIM can further improve the performance. However, the
automatic generation of heterogeneous PIM architectures faces
the following two unresolved problems. First, existing work has
not considered the design for heterogeneous PIM-based NN
accelerators with multiple memory technologies. Second, for PIM
with insufficient memory on edge devices, it is challenging to
find the optimal runtime weight scheduling strategy in an O(L!)
optimization space for the NN with L layers.

In this paper, we propose PIM-HLS, an automatic hardware
generation tool for heterogeneous PIM-based NN accelerators.
Aiming at the problems above, we first point out that het-
erogeneous PIM can improve the performance under severe
area constraints. Then we optimize the architectures for each
NN layer by taking the advantage of different memory tech-
nologies. We also define the optimization problem of runtime
weight scheduling and mapping for the first time, and propose
a dynamic-programming-based weight scheduling algorithm to
reduce the optimization space to O(L2). We implement PIM-HLS
to automatically generate the hardware code and the instructions.
Results show that we achieve an averagely 5.9× speedup with
72.8% less area compared with state-of-the-art PIM designs.

I. INTRODUCTION

With the development of neural networks (NNs), intelligent
edge devices start to become important in our daily life. But
new edge applications such as augmented reality and tactile
internet demand ms-level ultra-low latency under mm2-level
severe area constraints [1], bringing significant challenges
to the computing capability of edge devices. For traditional
CMOS-based NN accelerators, the numerous data movements
between the memory and computing units harm the perfor-
mance significantly [2].

In recent years, processing-in-memory (PIM) architectures
have become a promising way to enhance the performance
of NN acceleration on edge devices [3]. Unlike CMOS-based
von Neumann architectures, typical PIM architectures perform
computations within the memory arrays, avoiding the overhead
of data movements. Currently, different kinds of memory
technologies provide various PIM implementation approaches
[4]–[8], bringing advantages in different aspects. As shown in
Figure 1(a), SRAM-based PIM architectures based on [4]–[6]
have better performance, while RRAM-based PIM architec-
tures based on [7], [8] are better at memory density. Fortu-
nately, the development of heterogeneous memory integration
techniques [9] provides opportunities to integrate different
PIM implementation approaches in one chip. Therefore, we
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Fig. 1. (a) The memory density and normalized performance of architectures
based on recent PIM work. (b) The parameter and computation amount of the
layers in VGG-8.

are inspired to take their advantages simultaneously to further
improve the performance for edge applications.

Intelligent edge devices face the contradiction between high
performance requirements and severe area constraints. As
many intelligent edge devices use one specific NN model
[3], it is urgent to perform customized hardware design
and optimizations in order to fully exploit the performance.
However, because PIM-based architectures perform in-situ
computations, the optimization space is significantly different
from CMOS-based von Neumann architectures, making tradi-
tional automatic hardware generation tools inapplicable. The
automatic generation of PIM-based NN accelerators mainly
faces the following two problems that remain unresolved.

On the one hand, existing PIM design work only focuses
on homogeneous architectures with a single implementation
approach, ignoring the potential benefits brought by hetero-
geneous integration. As shown in Figure 1(b), the amounts of
parameters and computations of different layers in one network
vary a lot. Similarly, the PIM implementation approaches will
affect the area and computing performance. So they need to
be specifically optimized for each layer to achieve the optimal
performance. For instance, applying SRAM-based PIM to
the most time-consuming layer in VGG-8 [10] will reduce
77% latency with 1.3% more area overhead compared with
using RRAM-based PIM only. However, introducing layer-
wise hardware optimization will cause the design space to
grow exponentially with the number of layers, e.g., 1037 for
ResNet-18, making the optimization problem challenging.

On the other hand, existing PIM work assumes that all
the weights can be mapped to the PIM accelerator, which is
impractical for intelligent edge devices due to the severe area
constraints. As the erase and rewrite overhead of PIM-based
architectures is usually large [11], it is significant to optimize
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the runtime weight scheduling and mapping strategy to min-
imize the overhead. Despite when to map each layer to the
PIM accelerator, determining whether to split or duplicate the
layers to take full use of the memory resource also contributes
to the optimization space. As a result, the optimization space
of weight scheduling is tremendous, e.g., 1015 for ResNet-18.

Inspired by traditional high level synthesis (HLS) tools,
we propose PIM-HLS1, an automatic hardware optimization
and generation tool for PIM-based NN accelerators. PIM-HLS
takes the NN structure as the input, automatically generating
the optimized hardware description language (HDL) code with
the instructions for each module of the architecture. The HDL
code and instructions can be used directly for cycle-accurate
simulation and functional verification. The contributions of
this paper include:

• We point out that heterogeneous PIM with multiple PIM
implementation approaches can improve the performance.
By analyzing each layer’s demands, we propose criteria-
based sorting to optimize the PIM implementations for
each layer. Such design methodology improves the per-
formance by 3.7× compared with homogeneous designs.

• We define the optimization problem of runtime weight
scheduling and mapping for the first time, and find
the optimal strategy in polynomial time. We apply data
flow graph (DFG) topological sorting to guarantee the
data dependencies, and propose a dynamic-programming
(DP) -based weight scheduling algorithm to optimize the
scheduling strategy. The optimization space is reduced
from O(L!) to O(L2) for the network with L layers.

• We implement PIM-HLS to generate the HDL code and
instructions automatically. We compare the performance
of the architectures generated by PIM-HLS with state-
of-the-art PIM-based architectures under different area
constraints. Results show that the architectures generated
by PIM-HLS achieve an averagely 5.9× speedup with
72.8% less area compared with state-of-the-art PIM work.

II. PRELIMINARIES
A. High Level Synthesis

HLS tools are used to generate HDL code from high-
level language code for CMOS-based architectures. Traditional
HLS tools first analyze the data flow and computation flow
of the high-level language code, then perform evaluations
and design space explorations to generate optimized control
flow and hardware architectures under given constraints. With
the development of NN algorithms, recent work proposes
HLS frameworks to generate accelerators specifically for NNs.
DeepBurning [12] designs HLS frameworks for FPGA imple-
mentations, supporting multiple kinds of NNs. AutoDNNchip
[13] proposes an HLS tool for NNs on both FPGAs and
ASICs. In summary, the existing work only aims at CMOS-
based homogeneous architectures. For heterogeneous PIM
architecture generation, how to assign different PIM imple-
mentation approaches to NN layers with various amount of
parameters and computations becomes a significant problem.

1The code is available in https://github.com/Hazuyuki/PIM-HLS.git

B. Design Automation of PIM-based Architectures
Recent work tries to develop design automation tools to

accelerate the design flow of PIM architectures. Modeling and
simulation work such as MNSIM [14] and NeuroSIM [15]
models the latency, area, and power of PIM architectures, help-
ing hardware designers evaluate the designs conventionally.
Design space exploration work such as Gibbon [16] automati-
cally search for the optimal hardware parameters and network
structures to achieve the best performance, but existing work
focuses on homogeneous PIM architectures. Besides, existing
work assumes that all the weights of one network can be stored
on the PIM accelerator, which is impractical for edge devices.
Due to the contradiction between the increasing amount of NN
parameters and the severe area limitations of intelligent edge
devices, how to schedule and map the weight data during the
runtime becomes an urgent challenge.

III. OVERVIEW OF PIM-HLS
Figure 2(a) demonstrates the overall framework of PIM-

HLS. PIM-HLS mainly contains three stages, i.e., preprocess-
ing, optimization, and generation.

In the preprocessing stage, PIM-HLS first takes the NN
description file as the input. The file provides the information
of each layer, and the dimensions of all the input and activation
tensors. Then the file is fed into the DFG analyzer to determine
the data dependencies among layers and generate the DFG.
At the same time, we employ PIM simulator [14] to realize
layer-wise latency and area evaluations under multiple hard-
ware settings, i.e., different PIM implementation approaches,
different array sizes, and different interface numbers for each
array. The device-level hardware data can be defined by users,
and the evaluation results will be used as the fundamental data
for the following optimization stage.

In the optimization stage, the heterogeneous PIM optimizer
will optimize the hardware design for the NN layers. The
optimizer will first perform PIM implementation approach
selection before scheduling (Section IV-A), then finely adjust
the hardware parameters (i.e., the array size and the interface
numbers) after scheduling (Section IV-C), in order to optimize
the performance under a given area constraint. The scheduler
will determine the weight mapping and scheduling strategy
under a given area constraint (Section IV-B).

Finally in the generation stage, the control flow generator
will generate the instructions according to the scheduling op-
timization results. Also, the hardware generator will generate
the HDL code using pre-defined hardware templates, as shown
in Figure 2(b). The basic hardware architecture of PIM-HLS
refers to MNSIM [14]. Different layers of the network is
mapped to different tiles, and connected with the network on
chip (NoC). Unlike MNSIM which has the same hardware
configurations for all the tiles, PIM-HLS regards the tiles as the
minimum granularity of the hardware optimization. Therefore,
PIM-HLS performs finer-grained design space explorations.
Notice that we use pseudo PIM arrays that consist of register
files with delay-configurable multiply accumulate (MAC) units
instead of real PIM intellectual properties (IPs). Users can
either directly use the pseudo PIM arrays for cycle-accurate
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simulation and functional verification, or simply replace them
with real PIM IPs for early-stage chip design.

IV. HARDWARE AND SCHEDULING OPTIMIZATION

In this section, we will introduce the optimization stage of
PIM-HLS. The purpose of this stage is to optimize the het-
erogeneous PIM architecture design and the weight scheduling
and mapping strategy to achieve the best performance under
a given area constraint. As discussed in Section I, the entire
optimization space is enormous, e.g., > 1052 for ResNet-18.
To find the optimal design in such a large design space, we
split the optimization stage into three steps, i.e., the coarse-
grained PIM implementation approach selection, the runtime
mapping and scheduling optimization, and the fine-grained
hardware parameter optimization, as shown in Figure 2(a).

A. Coarse-Grained PIM Implementation Approach Selection

Motivation. As described in Section I, different layers of
the network prefer different PIM implementation approaches,
enabling heterogeneous PIM architectures to improve the
performance with little overhead.

Problem Definition. In this step, our goal is to generate
candidate designs that assign different PIM implementation
approaches to the layers, denoted by Ri = a for assigning
implementation approach a to layer i. Assuming that the
network has L layers and we support K kinds of implemen-
tation approaches, O(KL) candidates will be generated for
the scheduling step. When the network becomes deeper, the
number of the candidates will rise exponentially.

Observation. Different PIM implementation approaches
have different advantages on memory density and computa-
tion capability, and different layers have various demands on
memory space and computation capabilities. We observe that
it will be beneficial to match the demands with the advantages
of PIM. E.g., for VGG-8 implementation, assigning SRAM-
based PIM to the most time-consuming layer will improve
the performance with little area overhead, as described in
Section I. In other words, matching more computational-
demanding layers to PIM implementation approaches with
higher computation capability benefits to the performance with
little area overhead in this case.

Method. To match the demands on memory and com-
putation of the layers to the advantages of different PIM
implementation approaches, we propose multiple criteria to
quantify them. The proposed criteria include the memory (i.e.,
memory density for PIM and memory demands for the layers),
the computation (i.e., computation capability for PIM and
computation demands for the layers), and the ratio between
memory and computation. We evaluate the layers’ demands
and the advantages of PIM with the criteria, in order to select
the optimal PIM implementation approaches for the layers.

Taking the memory criterion as an example, our method will
first calculate the memory consumption of each layer (denoted
by Cli for layer i) and the memory density of each PIM
implementation approach (denoted by Cra for approach a).
To assign the PIM implementation approaches that have larger
memory density to the layers consuming larger memory, we
sort the layers and the approaches in the order of the memory
consumption and the memory density, respectively. Finally, we
search for all the candidate designs that satisfy Equation 1:

∀i, j < L,Ri = a,Rj = b,

(Cra − Crb)(Cli − Clj) ≥ 0,
(1)

which guarantees the implementations with higher memory
density to be assigned to the layers requiring larger memory.

The optimization space of the proposed criteria-based
method is approximately O(LK−1). Because there are only
a few PIM implementation approaches to be considered in
real circumstances, while the neural networks can have tens
or hundreds of layers (i.e., L ≫ K), the proposed method
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is much faster than the naive brute-force search in practice.
E.g., the number of candidates will be 262144 and 18 for
the naive method and the proposed method, respectively,
when considering SRAM-based PIM and RRAM-based PIM
for ResNet-18. We also evaluate the proposed method on
various networks to figure out whether it can find the optimal
design. As illustrated in Figure 3, the candidates generated
by the criteria of the memory and the ratio of memory and
computation are mostly on the Pareto frontier of the whole
search space, proving the practicability of the two criteria and
the criteria-based method.
B. Runtime Weight Scheduling and Mapping

Motivation. With the severe area constraints of intelligent
edge devices, PIM architectures may not be able to store
all the parameters of the network. So it is necessary for
PIM architectures to support runtime weight scheduling and
mapping for the deployment of NNs on edge devices.

A straightforward method for runtime weight scheduling
and mapping is to map as many layers as possible for each
time, in order to reduce the number of memory writes.
However, this greedy algorithm faces the problem of the low
memory utilization, resulting in severe performance loss. E.g.,
the first three layers of VGG-8 consume 3.6Mb memory, while
the fourth layer takes 4.7Mb. If using the greedy algorithm
to map VGG-8 to the 8Mb RRAM-based PIM architecture,
the first three layers will be firstly mapped, and 55% memory
will be idle during computation. However, because the second
layer of VGG-8 consumes much latency, we can choose to
firstly map the first two layers, and duplicate the weights of the
second layer into maximally six copies. The total computation
latency can be reduced by 42% in this way.

Problem Definition. To simplify the scheduling and map-
ping problem, we assume that we choose several layers to be
mapped to the accelerator simultaneously for each time, called
a layer group. Only when the computation of one layer group
is finished can we map and compute the next layer group.
So, the scheduling problem can be transformed to assigning
the layers to multiple layer groups to achieve the optimal
performance, with consideration of the area constraints and
data dependencies. Because the maximum number of the layer
groups is at least L, and there are L layers to be scheduled,
the design space of the scheduling problem can reach O(L!).

Observation. We observe that the layers must be scheduled
sequentially due to the data dependencies of NN computation.
Assuming that the ith layer Li is in the jth layer group Gj ,
then Li+1 can only be assigned to Gj or Gj+1. In other
words, if Gj contains the layers Lp+1 ∼ Li, p ≤ i, the
scheduling strategy of the layers L1 ∼ Lp has no aftereffect
to the scheduling strategy of Li+1. This inspires us that the
scheduling optimization problem can be transformed to a
dynamic programming problem, as formulated in Equation 2,

Lat0 = 0, Lati+1 = min
0≤p≤i

(Latp + F (p+ 1, i+ 1)), (2)

where Latp represents the entire latency of the best schedul-
ing strategy for layers L1 ∼ Lp, and F (a, b) denotes the

Algorithm 1 Runtime Weight Scheduling and Mapping
Input: DFG: The data flow graph; Li: Information of layer i; A: The area

constraint.
Output: Gi: Layer groups.
1: Topological Sort(DFG,Li);
2: for i = 1 to L do
3: if Area(Li) > A then
4: Split(Li, ⌈Area(Li)/A⌉);
5: end if
6: end for
7: Lat0 = 0;
8: for i = 1 to L do
9: Lati = ∞;

10: for p = 0 to i− 1 do
11: Temp group = {Lp+1, Lp+2, ..., Li};
12: Duplicate(Temp group)
13: if Lati > Latp + F (Temp group) then
14: Lati = Latp + F (Temp group)
15: Group starti = p
16: end if
17: end for
18: end for
19: Compute G according to Group starti;
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mapping and computation latency of the layer group that
contains layers La ∼ Lb.

Method. Based on the observation above, we propose a DP-
based weight scheduling algorithm to reduce the optimization
space to O(L2), with considering of layer split and dupli-
cation. The proposed scheduling and mapping algorithm is
shown in Algorithm 1. To guarantee the data dependencies, we
first perform topological sorting for the layers according to the
DFG (line 1). For the layers that consume larger area than the
area constraint, we split their weights into multiple pieces (line
2 ∼ line 6). During the DP-based weight scheduling algorithm
(line 8 ∼ line 18), we first perform layer duplication, dupli-
cating the most time-consuming layer in the layer group until
the area is insufficient, and then find the optimal Lati with
Equation 2 and record the choice in Group starti. After the
DP-based algorithm, we iterate Group starti backwards to
determine the optimal layer groups, i.e., the optimal scheduling
and mapping strategy.

C. Fine-Grained Hardware Parameter Optimization

Motivation. Despite the PIM implementation approaches,
the hardware parameters also contribute to the tradeoff be-
tween the performance and area. Especially for analog PIM
such as RRAM-based PIM, the high-precision analog-digital
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converters (ADCs) and digital-analog converters (DACs) con-
sume large area overhead. But more ADCs and DACs for
each array will also enable higher parallelism. Setting dif-
ferent hardware parameters for different layers will improve
the performance under certain area constraints. E.g., when
deploying VGG-8 and the total array area is limited to 10mm2,
the latency will be reduced by 65% if only applying 4×
more ADCs to the most consuming layer for RRAM-based
PIM architectures. However, because of the runtime weight
scheduling and mapping proposed in Section IV-B, multiple
layers have to be mapped to the same arrays to reuse the
hardware resource as shown in Figure 4(a), preventing us from
separately optimizing the hardware parameters for each layer.

Problem Definition. As described in Section III, we regard
the tiles as the minimum granularity of the hardware opti-
mization. To model the optimization problem, we set layers
to different tiles in Figure 4(b). The abscissa in Figure 4(b)
represents the execution time, and the ordinate represents the
tiles. For each layer, its position in the figure determines
when and to which tiles it should be mapped. Our goal is to
optimize the hardware configurations of each tile to achieve
the minimum latency under a given area constraint. Simply
performing a brute-force search is time-consuming as the
search space can reach O(CT ), where C is the number of
design choices for each tile and T is the tile number.

Observation. To reduce the search space, we make an
assumption and propose two observations. We assume that the
layers of one layer group are executed in a pipeline, which
means the computation latency of one layer group can be
estimated by the latency of the most time-consuming layer.
Based on this assumption, we observe that if multiple tiles
store the weights for one layer, we should give these tiles the
same hardware parameters, as the entire latency is determined
by the most time-consuming tile. The second observation is
that the layers with higher computation demands should be
mapped to tiles with higher computation capabilities, in order
to reduce the bottleneck latency. Therefore, we regard the more
computational-demanding layers as the more important layers,
and optimize their latency at a higher priority.

Method. Based on the two observations, we heuristically
map the layers to the memory tiles and optimize the hardware
parameter for the bottleneck layers. First, as shown in Fig-
ure 4(c), we sort the layers in each layer group by their com-
putation amounts. Therefore, the computational-demanding
layers of different layer groups will reuse the same tiles, which
need to be optimized at a high priority. Second, we split the
tiles into tile sets, ensuring that every tile of the same tile
set works for only one layer in each layer group. Thus we
can perform optimizations for tile sets instead of tiles, and
reduce the search space from O(CT ) to O(CL), where L
represents the number of the layers of the network. Finally,
as illustrated in Figure 4(d), we only optimize the hardware
parameters of the tile sets, which are assigned to the bottleneck
layers. Because there are at most L tile sets, and we perform at
most C times of trials to optimize each tile set, the bottleneck-
optimization algorithm further reduces the optimization space

to O(CL). Compared with MNSIM [14] evaluation results,
our latency estimation has an averagely 3.5% error due to
the initiation interval of the pipeline and the inter-tile data
communications. The result shows that the proposed pipeline
assumption is practical for the optimization.

V. EVALUATIONS
A. Evaluation Setup

PIM-HLS employs the open-source PIM simulator MNSIM
[14] to evaluate the performance and area of different NN
layers with different hardware configurations. For the PIM
implementation approaches, we consider SRAM-based PIM
and RRAM-based PIM, and the device parameters refer to
[17] and [18], respectively. We use homogeneous PIM-based
architectures based on state-of-the-art work [2] and [17] as
baselines, which are also evaluated by MNSIM for fair com-
parison. We use two typical convolutional neural networks
(CNNs) for evaluation, i.e., VGG-8 [10] and ResNet-18 [19].
And PIM-HLS can also be used for other CNN models.

B. Evaluation Results
We compare the architectures that are optimized and gen-

erated by PIM-HLS with the RRAM-PIM baseline [2] and
the SRAM-PIM baseline [17]. The two baselines consume
39mm2 and 47mm2 area on VGG-8 dataset, and 93mm2 and
62mm2 area on ResNet-18 dataset, according to the MNSIM
evaluation. As illustrated in Figure 5, to show the abilities
of PIM-HLS under different area constraints, we provide the
latency data of architectures generated by PIM-HLS under
16mm2 and 40mm2 area constraints. The former constraint
represents a typical area for edge devices [20], while the latter
is comparable to the baselines. The results show that our
heterogeneous PIM-designs under 16mm2 area constraint can
achieve 4.8× performance improvement, while saving 3.7×
area on average at the same time. When the area constraint is
relaxed to 40mm2, which is comparable with the baselines,
the performance improvements come up to 11.7× and 7.5× on
the two datasets. Despite the heterogeneous PIM architectures
with both SRAM and RRAM, PIM-HLS can also optimize
the hardware parameters and perform scheduling for RRAM-
based architectures and SRAM-based architectures. As shown
in Figure 5, PIM-HLS enables the deployment of the networks
when the memory capacity is insufficient, while bringing
10.0× and 6.3× speedup for RRAM-based architectures and
10.1× and 6.0× speedup for SRAM-based architectures with
comparable area to the baselines.

C. Ablation Study
In this section, we discuss the throughput improvement

brought by the optimizations proposed in Section IV under
typical area constraints of edge devices [20]. We evaluate the
throughput of different PIM implementation approaches (i.e.,
RRAM, SRAM, and Heterogeneous in Figure 6) with differ-
ent optimizations (i.e., -S for only applying the scheduling
optimization, and -SP for applying both the scheduling and
parameter optimization in Figure 6).

As shown in Figure 6(a), when the area constraint rises
from 10mm2 to 20mm2, the throughput of RRAM-PIM starts

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 18,2023 at 05:38:54 UTC from IEEE Xplore.  Restrictions apply. 



7

6

5

4

3

2

1

0

La
te
nc
y

(m
s)

Bas
elin
e-S
RA
M

Bas
elin
e-R
RA
M

PIM
-HL
S-S
RA
M

PIM
-HL
S-R
RA
M

PIM
-HL
S-H
ete
ro.

PIM
-HL
S-S
RA
M

PIM
-HL
S-R
RA
M

PIM
-HL
S-H
ete
ro.

Bas
elin
e-S
RA
M

Bas
elin
e-R
RA
M

PIM
-HL
S-S
RA
M

PIM
-HL
S-R
RA
M

PIM
-HL
S-H
ete
ro.

PIM
-HL
S-S
RA
M

PIM
-HL
S-R
RA
M

PIM
-HL
S-H
ete
ro.

Area < 16mm2 Area < 40mm2

VGG-8

Area < 16mm2 Area < 40mm2

ResNet-18
Area < 
43mm2

Area < 
97mm2 

6.7× 13.5×

4.4× 8.7×

Fig. 5. Latency comparisons between state-of-the-art PIM architectures and
architectures generated by PIM-HLS.

1.5

1.0

0.5

0

1.5

1.0

0.5

0

1.5

1.0

0.5

0

RRAM-SP SRAM-SP Heterogeneous-SP
RRAM SRAM

RRAM
RRAM-S
RRAM-SP

SRAM
SRAM-S
SRAM-SP

Heterogeneous
Heterogeneous-S
Heterogeneous-SP

10 11 12 13 14 15 16 17 18 19 20

1.5

1.0

0.5

0

10 11 12 13 14 15 16 17 18 19 20

Area Constraints (mm2)
(a)

Area Constraints (mm2)
(b)

Th
ro

ug
hp

ut
 (i

m
ag

es
 / 

m
s)

Th
ro

ug
hp

ut
 (i

m
ag

es
 / 

m
s)

4.9×

Fig. 6. The throughput improvements brought by (a) PIM implementation
approach selection; (b) weight scheduling and parameter optimization.

to rise before SRAM-PIM due to RRAM PIM’s high storage
density. But the SRAM-based designs achieve higher through-
put when the area is sufficient due to SRAM-PIM’s high
computation capability. The heterogeneous PIM architectures
achieve the best throughput within a small area, showing the
advantages of both RRAM and SRAM.

According to Figure 6(b), with insufficient area, the weight
scheduling and mapping optimization brings 1.3×, 1.7×, and
1.7× speedups for RRAM, SRAM, and heterogeneous PIM,
respectively. As SRAM-PIM is more area-constrained, the
scheduling optimization provides higher improvements for
SRAM-PIM than RRAM-PIM. Also, due to the large overhead
of high-precision interfaces in RRAM-PIM, the hardware pa-
rameter optimization provides more throughput improvement
for RRAM-PIM (i.e., average 2.4×) than the SRAM-PIM and
the heterogeneous designs (i.e., 1.2× for both of them).

VI. CONCLUSIONS AND FUTURE WORK

In this work, we propose PIM-HLS, an automatic generation
tool for heterogeneous PIM-based NN accelerators. We stress
out the key problems of heterogeneous PIM design and
runtime weight scheduling and mapping, and find the optimal

architecture design and scheduling strategy under a given area
constraint. Results show that we achieve an averagely 5.9×
speedup with 72.8% less area compared to state-of-the-art
PIM designs. In the future, we will adapt PIM-HLS to support
the optimization for multiple NN models on one PIM-based
accelerator, thus enabling the automatic generation of PIM-
based accelerators for a wider range of applications.
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